1
|
Zhang Y, Fu Q, Ruan J, Shi C, Lu W, Wu J, Zhou Z. Dexpramipexole ameliorates cognitive deficits in sepsis-associated encephalopathy through suppressing mitochondria-mediated pyroptosis and apoptosis. Neuroreport 2023; 34:220-231. [PMID: 36719835 PMCID: PMC10516177 DOI: 10.1097/wnr.0000000000001882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVES This study was aimed at evaluating the effects of dexpramipexole (DPX) - a mitochondrial protectant that sustains mitochondrial function and energy production - on cognitive function in a mouse model of sepsis-associated encephalopathy (SAE) induced by peripheral administration of lipopolysaccharide (LPS) and examining the potential mechanisms. METHODS C57BL/6 male mice were randomized into one of four treatment protocols: Con+Sal, Con+DPX, LPS+Sal or LPS+DPX. The mice were intraperitoneally (i.p.) injected with LPS or equivalent volumes of normal saline once daily for 3 consecutive days. To evaluate the protective effects of DPX, we administered DPX or normal saline i.p. to the mice once daily for 6 consecutive days. Six mice in each group were decapitated on day 7, and each brain was rapidly removed and separated into two halves for biochemical and histochemical analysis. The remaining surviving mice in each group were subjected to behavioral tests from days 7 to 10. RESULTS Peripheral administration of LPS to mice led to learning and memory deficits in behavioral tests, which were associated with mitochondrial impairment and ATP depletion in the hippocampus. Repeated DPX treatment protected the mitochondria against LPS-induced morphological and functional impairment; inhibited the activation of the Nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome-caspase-1-dependent pyroptosis pathway and cytochrome c (Cyt-c)-caspase-3-dependent apoptosis pathway; and attenuated LPS-induced neuroinflammation and cell death in the hippocampus in SAE mice. CONCLUSIONS Mitochondria-mediated pyroptosis and apoptosis are involved in the pathogenesis of cognitive deficits in a mouse model of SAE and DPX protects mitochondria and suppresses the mitochondria-medicated pyroptosis and apoptosis pathways, and ameliorates LPS-induced neuroinflammation and cognitive deficits. This study provides theoretical evidence supporting DPX for the treatment of SAE.
Collapse
Affiliation(s)
- Yibao Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University
| | - Qun Fu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaping Ruan
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Changxi Shi
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Wuguang Lu
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Wu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou
| | - Zhiqiang Zhou
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University
| |
Collapse
|
2
|
Coppi E, Buonvicino D, Ranieri G, Cherchi F, Venturini M, Pugliese AM, Chiarugi A. Dexpramipexole Enhances K + Currents and Inhibits Cell Excitability in the Rat Hippocampus In Vitro. Mol Neurobiol 2021; 58:2955-2962. [PMID: 33566318 DOI: 10.1007/s12035-021-02300-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Dexpramipexole (DEX) has been described as the first-in-class F1Fo ATP synthase activator able to boost mitochondrial bioenergetics and provide neuroprotection in experimental models of ischemic brain injury. Although DEX failed in a phase III trial in patients with amyotrophic lateral sclerosis, it showed favorable safety and tolerability profiles. Recently, DEX emerged as a Nav1.8 Na+ channel and transient outward K+ (IA) conductance blocker, revealing therefore an unexpected, pleiotypic pharmacodynamic profile. In this study, we performed electrophysiological experiments in vitro aimed to better characterize the impact of DEX on voltage-dependent currents and synaptic transmission in the hippocampus. By means of patch-clamp recordings on isolated hippocampal neurons, we found that DEX increases outward K+ currents evoked by a voltage ramp protocol. This effect is prevented by the non-selective voltage-dependent K+ channel (Kv) blocker TEA and by the selective small-conductance Ca2+-activated K+ (SK) channel blocker apamin. In keeping with this, extracellular field recordings from rat hippocampal slices also demonstrated that the compound inhibits synaptic transmission and CA1 neuron excitability. Overall, these data further our understanding on the pharmacodynamics of DEX and disclose an additional mechanism that could underlie its neuroprotective properties. Also, they identify DEX as a lead to develop new modulators of K+ conductances.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Min Y, Yan L, Wang Q, Wang F, Hua H, Yuan Y, Jin H, Zhang M, Zhao Y, Yang J, Jiang X, Yang Y, Li F. Distinct Residential and Infiltrated Macrophage Populations and Their Phagocytic Function in Mild and Severe Neonatal Hypoxic-Ischemic Brain Damage. Front Cell Neurosci 2020; 14:244. [PMID: 32903800 PMCID: PMC7438904 DOI: 10.3389/fncel.2020.00244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023] Open
Abstract
Neonatal brain injury, especially severe injury induced by hypoxia-ischemia (HI), causes mortality and long-term neurological impairments. Our previous study demonstrated activation of CD11b+ myeloid cells, including residential microglial cells (MGs) and infiltrating monocyte-derived macrophages (MDMs) in a murine model of hypoxic-ischemic brain damage (HIBD), with unknown functions. Here, we study the differences in the phagocytic function of MGs and MDMs to clarify their potential roles after HIBD. HI was induced in 9-10-day postnatal mice. On days 1 and 3 after injury, pathological and neurobehavioral tests were performed to categorize the brain damage as mild or severe. Flow cytometry was applied to quantify the dynamic change in the numbers of MGs and MDMs according to the relative expression level of CD45 in CD11b+ cells. CX3CR1 GFPCCR2 RFP double-transformed mice were used to identify MGs and MDMs in the brain parenchyma after HIBD. Lysosome-associated membrane protein 1 (LAMP1), toll-like receptor 2 (TLR2), CD36, and transforming growth factor (TGF-β) expression levels were measured to assess the underlying function of phagocytes and neuroprotective factors in these cells. The FITC-dextran 40 phagocytosis assay was applied to examine the change in phagocytic function under oxygen-glucose deprivation (OGD) in vitro. We found that neonatal HI induced a different degree of brain damage: mild or severe injury. Compared with mildly injured animals, mice with severe injury had lower weight, worse neurobehavioral scores, and abnormal brain morphology. In a severely injured brain, CD11b+ cells remarkably increased, including an increase in the MDM population and a decrease in the MG population. Furthermore, MDM infiltration into the brain parenchyma was evident in CX3CR1 GFPCCR2 RFP double-transformed mice. Mild and severe brain injury caused different phagocytosis-related responses and neuroprotective functions of MDMs and MGs at 1 and 3 days following HI. The phagocytic function was activated in BV2 cells but downregulated in Raw264.7 cells under OGD in vitro. These observations indicate that neonatal HI induced different degrees of brain injury. The proportion of infiltrated macrophage MDMs was increased and they were recruited into the injured brain parenchyma in severe brain injury. The resident macrophage MGs proportion decreased and maintained activated phagocytic function in both mild and severe brain injury, and restored neuroprotective function in severe brain injury.
Collapse
Affiliation(s)
- Yingjun Min
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Lin Yan
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Qian Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Fang Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Hairong Hua
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yun Yuan
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Huiyan Jin
- Department of Functional Experiment, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Ming Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Yaling Zhao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianzhong Yang
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiangning Jiang
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Yuan Yang
- Department of Physiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Mignani S, Majoral JP, Desaphy JF, Lentini G. From Riluzole to Dexpramipexole via Substituted-Benzothiazole Derivatives for Amyotrophic Lateral Sclerosis Disease Treatment: Case Studies. Molecules 2020; 25:E3320. [PMID: 32707914 PMCID: PMC7435757 DOI: 10.3390/molecules25153320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
The 1,3-benzothiazole (BTZ) ring may offer a valid option for scaffold-hopping from indole derivatives. Several BTZs have clinically relevant roles, mainly as CNS medicines and diagnostic agents, with riluzole being one of the most famous examples. Riluzole is currently the only approved drug to treat amyotrophic lateral sclerosis (ALS) but its efficacy is marginal. Several clinical studies have demonstrated only limited improvements in survival, without benefits to motor function in patients with ALS. Despite significant clinical trial efforts to understand the genetic, epigenetic, and molecular pathways linked to ALS pathophysiology, therapeutic translation has remained disappointingly slow, probably due to the complexity and the heterogeneity of this disease. Many other drugs to tackle ALS have been tested for 20 years without any success. Dexpramipexole is a BTZ structural analog of riluzole and was a great hope for the treatment of ALS. In this review, as an interesting case study in the development of a new medicine to treat ALS, we present the strategy of the development of dexpramipexole, which was one of the most promising drugs against ALS.
Collapse
Affiliation(s)
- Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, 45, rue des Saints Peres, 75006 Paris, France
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse CEDEX 4, France;
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse CEDEX 4, France
| | - Jean-François Desaphy
- Dipartimento di Scienze Biomediche e Oncologia Umana, Scuola di Medicina, Università degli Studi di Bari Aldo Moro, Piazza Giulio Cesare, 70124 Bari, Italy;
| | - Giovanni Lentini
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
5
|
Buonvicino D, Ranieri G, Pratesi S, Gerace E, Muzzi M, Guasti D, Tofani L, Chiarugi A. Neuroprotection induced by dexpramipexole delays disease progression in a mouse model of progressive multiple sclerosis. Br J Pharmacol 2020; 177:3342-3356. [PMID: 32199028 DOI: 10.1111/bph.15058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Drugs able to counteract progressive multiple sclerosis (MS) represent a largely unmet therapeutic need. Even though the pathogenesis of disease evolution is still obscure, accumulating evidence indicates that mitochondrial dysfunction plays a causative role in neurodegeneration and axonopathy in progressive MS patients. Here, we investigated the effects of dexpramipexole, a compound with a good safety profile in humans and able to sustain mitochondria functioning and energy production, in a mouse model of progressive MS. EXPERIMENTAL APPROACH Female non-obese diabetic mice were immunized with MOG35-55 . Functional, immune and neuropathological parameters were analysed during disease evolution in animals treated or not with dexpramipexole. The compound's effects on bioenergetics and neuroprotection were also evaluated in vitro. KEY RESULTS We found that oral treatment with dexpramipexole at a dose consistent with that well tolerated in humans delayed disability progression, extended survival, counteracted reduction of spinal cord mitochondrial DNA content and reduced spinal cord axonal loss of mice. Accordingly, the drug sustained in vitro bioenergetics of mouse optic nerve and dorsal root ganglia and counteracted neurodegeneration of organotypic mouse cortical cultures exposed to the adenosine triphosphate-depleting agents oligomycin or veratridine. Dexpramipexole, however, was unable to affect the adaptive and innate immune responses both in vivo and in vitro. CONCLUSION AND IMPLICATION The present findings corroborate the hypothesis that neuroprotective agents may be of relevance to counteract MS progression and disclose the translational potential of dexpramipexole to treatment of progressive MS patients as a stand-alone or adjunctive therapy.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Sara Pratesi
- Centre of Immunological Research DENOTHE, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisabetta Gerace
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Mirko Muzzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Clinical and Experimental Medicine, Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Lorenzo Tofani
- Clinical Trials Coordinating Center of Istituto Toscano Tumori, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Dexpramipexole blocks Nav1.8 sodium channels and provides analgesia in multiple nociceptive and neuropathic pain models. Pain 2019; 161:831-841. [DOI: 10.1097/j.pain.0000000000001774] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Tu X, Wang M, Liu Y, Zhao W, Ren X, Li Y, Liu H, Gu Z, Jia H, Liu J, Li G, Luo L. Pretreatment of Grape Seed Proanthocyanidin Extract Exerts Neuroprotective Effect in Murine Model of Neonatal Hypoxic-ischemic Brain Injury by Its Antiapoptotic Property. Cell Mol Neurobiol 2019; 39:953-961. [PMID: 31147852 DOI: 10.1007/s10571-019-00691-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
Abstract
Grape seed proanthocyanidin extract (GSPE), an active component extracted from the grape, has been reported to demonstrate antioxidant, anti-inflammatory, anticancer, and antiapoptosis effects. However, little is known about the role of GSPE on neonatal hypoxic-ischemic (HI) brain injury. The aim of this study was to evaluate the neuroprotective effect of GSPE pretreatment on neonatal HI brain injury in mice. A modified Rice-Vannucci method was performed to induce neonatal HI brain injury in the 7-day-old mouse pups pretreated with GSPE or vehicle. The infarct volumes were determined by TTC staining. TUNEL staining was used to detect cells apoptosis, and the expressions of apoptosis-related proteins: bax, bcl2, and cleaved caspase-3 were assayed by Western blot. Behavioral tests were also conducted to assess the functional recovery after injury. We showed that the brain damage and neurobehavioral outcomes improvement was observed in GSPE pretreated group. GSPE was proved to suppress apoptosis through inhibition of bax and cleaved caspase-3 expression. It demonstrates that GSPE could alleviate brain damage maybe through its antiapoptotic activity in a neonatal HI brain injury model, and GSPE has the potential to be a new drug for effective prevention of this disorder.
Collapse
Affiliation(s)
- Xing Tu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Mengxia Wang
- Intensive Care Unit, Guangdong No. 2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Yilin Liu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Wenyan Zhao
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xuxin Ren
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yuanjun Li
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hongqing Liu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Ziting Gu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hui Jia
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jing Liu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Guoying Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China.
- Guangdong Medical Association, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Woźnica M, Luliński P. Design of selective molecularly imprinted sorbent for the optimized solid-phase extraction of S-pramipexole from the model multicomponent sample of human urine. J Sep Sci 2019; 42:1412-1422. [PMID: 30681270 DOI: 10.1002/jssc.201801101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 01/04/2023]
Abstract
The objective of this article was to design the selective molecularly imprinted sorbent dedicated to the solid-phase extraction of S-pramipexole from the complex matrix such as human urine. For that purpose, S-2,6-diamino-4,5,6,7-tetrahydrobenzothiazole was used as the template acting as the structural analog of S-pramipexole and five various monomers were employed in the presence of ethylene glycol dimethacrylate to produce molecularly imprinted polymers. The binding capabilities of resulted polymers revealed that the highest imprinting effect was noted for polymer prepared from the itaconic acid. The comprehensive analysis of morphology and the characterization of binding sites showed not only negligible differences in the extension of surfaces of imprinted and nonimprinted polymers but also higher heterogeneity of binding sites in the imprinted material. Comprehensive optimization of the molecularly imprinted solid-phase extraction allowed to select the most appropriate solvents for loading, washing, and elution steps. Subsequent optimization of mass of sorbent and volumes of solvents allowed to achieve satisfactory total recoveries of S-pramipexole from the model multicomponent real sample of human urine that equals to 91.8 ± 3.2% for imprinted sorbent with comparison to only 37.1 ± 1.1% for Oasis MCX.
Collapse
Affiliation(s)
- Marcin Woźnica
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|