1
|
Rajkumar RP. Telomere Dynamics in Post-Traumatic Stress Disorder: A Critical Synthesis. Biomedicines 2025; 13:507. [PMID: 40002919 PMCID: PMC11853385 DOI: 10.3390/biomedicines13020507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Post-traumatic stress disorder (PTSD), a mental disorder caused by exposure to traumatic stress, affects 5-10% of the world's population. There is some evidence that PTSD is associated with accelerated cellular aging, leading to an increased risk of medical and neurodegenerative comorbidities. Alterations in telomere length (TL) and telomerase enzyme activity have been proposed as biomarkers of this process. This hypothesis was seemingly confirmed in preliminary research, but more recent studies have yielded mixed results. The current narrative review was conducted to provide a critical synthesis of existing research on telomere length and telomerase in PTSD. Data from 26 clinical studies suggest that TL in PTSD is highly variable and may be influenced by methodological, demographic, trauma-related, and psychosocial factors. There is no evidence for altered telomerase activity in PTSD. In contrast, animal research suggests that exposure to traumatic stress does lead to TL shortening. Overall, it is likely that TL is not, by itself, a reliable biomarker of cellular aging in PTSD. Other markers of cellular senescence, such as epigenetic changes, may prove to be more specific in measuring this process in patients with PTSD.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605006, India
| |
Collapse
|
2
|
Allsopp RC, Hernández LM, Taylor MK. The Val66Met variant of brain-derived neurotrophic factor is linked to reduced telomere length in a military population: a pilot study. Sci Rep 2024; 14:27013. [PMID: 39506036 PMCID: PMC11542005 DOI: 10.1038/s41598-024-78033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
In military populations, gene-environment interactions can influence performance and health outcomes. Brain-derived neurotrophic factor (BDNF) is a central nervous system protein that is important for neuronal function and synaptic plasticity. A BDNF single nucleotide polymorphism, rs6265, leads to an amino acid substitution of valine (Val) with methionine (Met) at codon 66 (Val66Met), which may influence an individual's response to occupational stress, and predispose military members to psychological disorders. Telomere length (TL), a novel measure of biological aging, can be used as a biomarker of stress. Accordingly, telomere shortening may be a surrogate indicator of physiological weathering due to chronic disease and stressful life events. To increase our understanding about the potential effect of the Val66Met mutation on the human stress response, we evaluated the relationships between Val66Met, TL, and mental health symptoms in a military population. In this pilot study (N = 164), we observed an association between Val66Met and reduced TL (p = 0.048). There was no relationship between Val66Met and mental health symptoms. These results support the investigation of gene-environment interactions, and their potential influence on TL due to occupational stress such as military service.
Collapse
Affiliation(s)
- Richard C Allsopp
- Yanagimachi Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Biomed Sciences Building, Honolulu, HI, 96813, USA
| | - Lisa M Hernández
- Leidos, Inc., 10260 Campus Point Drive, San Diego, CA, 92121, USA.
- Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA.
| | - Marcus K Taylor
- Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA
| |
Collapse
|
3
|
Womersley JS, Xulu KR, Sommer J, Hinsberger M, Kidd M, Elbert T, Weierstall R, Kaminer D, Malan-Müller S, Seedat S, M J Hemmings S. Associations between telomere length and symptoms of posttraumatic stress disorder and appetitive aggression in trauma-exposed men. Neurosci Lett 2021; 769:136388. [PMID: 34890718 DOI: 10.1016/j.neulet.2021.136388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022]
Abstract
Exposure to community violence is common in South Africa and negatively impacts on biopsychosocial health. Posttraumatic stress disorder (PTSD) is characterised by symptoms of intrusion, avoidance, hypervigilance and negative alterations in cognition and mood, and can develop consequent to trauma exposure. Individuals who repeatedly experience and witness violence may also come to view it as appealing and rewarding. This appetitive aggression (AA) increases the likelihood of perpetrating violence. Telomeres are repetitive nucleotide sequences that protect the ends of chromosomes. Telomere length (TL) attrition is a stress-sensitive marker of biological aging that has been associated with a range of psychiatric disorders. This study investigated the cross-sectional relationship between TL and symptoms of PTSD and AA in South African men residing in areas with high community violence. PTSD and AA symptom severity was assessed in 290 men using the Posttraumatic Stress Disorder Symptom Scale - Interview (PSS-I) and Appetitive Aggression Scale (AAS), respectively. Quantitative polymerase chain reaction was performed on DNA extracted from saliva and used to calculate relative TL (rTL). Regression models were used to assess the relationships between rTL and PSS-I and AAS scores. Network analyses using EBIC glasso methods were performed using rTL and items from each of the AAS and PSS-I measures. Both PSS-I (p = 0.023) and AAS (p = 0.016) scores were positively associated with rTL. Network analyses indicated that rTL was weakly related to two PSS-I and five AAS items but performed poorly on indicators of centrality and was not strongly associated with measure items either directly or indirectly. The positive association between rTL and measures of AA and PTSD may be due to the induction of protective homeostatic mechanisms, which reduce TL attrition, following early life trauma exposure.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Khethelo R Xulu
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Jessica Sommer
- Department of Psychology, University of Konstanz, Konstanz, Germany.
| | | | - Martin Kidd
- Centre for Statistical Consultation, Department of Statistics & Actuarial Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Thomas Elbert
- Department of Psychology, University of Konstanz, Konstanz, Germany.
| | - Roland Weierstall
- Department of Psychology, University of Konstanz, Konstanz, Germany; Clinical Psychology & Psychotherapy, Medical School Hamburg, Hamburg, Germany; Oberberg Clinics, Berlin, Germany.
| | - Debbie Kaminer
- Department of Psychology, University of Cape Town, Cape Town, South Africa.
| | - Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
4
|
Pousa PA, Souza RM, Melo PHM, Correa BHM, Mendonça TSC, Simões-e-Silva AC, Miranda DM. Telomere Shortening and Psychiatric Disorders: A Systematic Review. Cells 2021; 10:1423. [PMID: 34200513 PMCID: PMC8227190 DOI: 10.3390/cells10061423] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Telomeres are aging biomarkers, as they shorten while cells undergo mitosis. The aim of this study was to evaluate whether psychiatric disorders marked by psychological distress lead to alterations to telomere length (TL), corroborating the hypothesis that mental disorders might have a deeper impact on our physiology and aging than it was previously thought. A systematic search of the literature using MeSH descriptors of psychological distress ("Traumatic Stress Disorder" or "Anxiety Disorder" or "depression") and telomere length ("cellular senescence", "oxidative stress" and "telomere") was conducted on PubMed, Cochrane Library and ScienceDirect databases. A total of 56 studies (113,699 patients) measured the TL from individuals diagnosed with anxiety, depression and posttraumatic disorders and compared them with those from healthy subjects. Overall, TL negatively associates with distress-related mental disorders. The possible underlying molecular mechanisms that underly psychiatric diseases to telomere shortening include oxidative stress, inflammation and mitochondrial dysfunction linking. It is still unclear whether psychological distress is either a cause or a consequence of telomere shortening.
Collapse
Affiliation(s)
- Pedro A. Pousa
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Raquel M. Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Paulo Henrique M. Melo
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Bernardo H. M. Correa
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Tamires S. C. Mendonça
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Ana Cristina Simões-e-Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Débora M. Miranda
- Department of Pediatrics, Laboratory of Molecular Medicine, UFMG, Belo Horizonte, Minas Gerais 30130-100, Brazil
| |
Collapse
|
5
|
Howard JT, Janak JC, Santos-Lozada AR, McEvilla S, Ansley SD, Walker LE, Spiro A, Stewart IJ. Telomere Shortening and Accelerated Aging in US Military Veterans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041743. [PMID: 33670145 PMCID: PMC7916830 DOI: 10.3390/ijerph18041743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/24/2023]
Abstract
A growing body of literature on military personnel and veterans’ health suggests that prior military service may be associated with exposures that increase the risk of cardiovascular disease (CVD), which may differ by race/ethnicity. This study examined the hypothesis that differential telomere shortening, a measure of cellular aging, by race/ethnicity may explain prior findings of differential CVD risk in racial/ethnic groups with military service. Data from the first two continuous waves of the National Health and Nutrition Examination Survey (NHANES), administered from 1999–2002 were analyzed. Mean telomere length in base pairs was analyzed with multivariable adjusted linear regression with complex sample design, stratified by sex. The unadjusted mean telomere length was 225.8 base shorter for individuals with prior military service. The mean telomere length for men was 47.2 (95% CI: −92.9, −1.5; p < 0.05) base pairs shorter for men with military service after adjustment for demographic, socioeconomic, and behavioral variables, but did not differ significantly in women with and without prior military service. The interaction between military service and race/ethnicity was not significant for men or women. The results suggest that military service may contribute to accelerated aging as a result of health damaging exposures, such as combat, injury, and environmental contaminants, though other unmeasured confounders could also potentially explain the results.
Collapse
Affiliation(s)
- Jeffrey T. Howard
- Department of Public Health, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA; (S.M.); (S.D.A.)
- Consequences of Trauma Working Group, the Center for Community-Based and Applied Health Research, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
- Correspondence: ; Tel.: +1-210-458-2987
| | | | - Alexis R. Santos-Lozada
- Department of Human Development and Family Studies, Pennsylvania State University, 119 Health and Human Development Building, University Park, PA 16802, USA;
| | - Sarah McEvilla
- Department of Public Health, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA; (S.M.); (S.D.A.)
| | - Stephanie D. Ansley
- Department of Public Health, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA; (S.M.); (S.D.A.)
- Consequences of Trauma Working Group, the Center for Community-Based and Applied Health Research, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lauren E. Walker
- David Grant USAF Medical Center, Travis Air Force Base, Fairfield, CA 94535, USA;
| | - Avron Spiro
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA 02130, USA;
- Departments of Epidemiology and Psychiatry, Boston University Schools of Public Health and Medicine, Boston, MA 02118, USA
| | - Ian J. Stewart
- Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA;
| |
Collapse
|
6
|
Neurobiological Trajectories Involving Social Isolation in PTSD: A Systematic Review. Brain Sci 2020; 10:brainsci10030173. [PMID: 32197333 PMCID: PMC7139956 DOI: 10.3390/brainsci10030173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Social isolation (SI) stress has been recognized as a major risk factor of morbidity in humans and animals, exerting damaging effects at the physical and mental health levels. Posttraumatic stress disorder (PTSD), on the other hand, occurs as a result of experiencing serious, life-threatening, traumatic events and involves involuntary re-experiencing trauma (intrusion), avoidance symptoms, and distortions of cognition and emotional arousal. The literature shows that PTSD is affected by genetic predisposition and triggers a large neurocircuitry involving the amygdala, insula, hippocampus, anterior cingulate- and prefrontal-cortex, and affects the function of the neuroendocrine and immune systems. Social isolation seems to influence the predisposition, onset and outcome of PTSD in humans, whereas it constitutes a valid model of the disorder in animals. According to the PRISMA (preferred reporting items for systematic reviews and meta-analyses) protocol, we systematically reviewed all original studies involving the neurobiological trajectories between SI and PTSD published till July 2019 (database: PubMed/Medline). Out of 274 studies, 10 met the inclusion criteria. We present the results of the retrieved studies in terms of hypothalamic-pituitary-adrenal (HPA)-axis and endocannabinoid system function, immune reactions, neuroplasticity, novel pharmacological targets, and shortening of telomere length, which confirm a synergistic effect on a neurobiological level between the two entities.
Collapse
|