1
|
Huang J, Kuang W, Zhou Z. IL-1 signaling pathway, an important target for inflammation surrounding in myocardial infarction. Inflammopharmacology 2024; 32:2235-2252. [PMID: 38676853 DOI: 10.1007/s10787-024-01481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Acute myocardial infarction is an important cardiovascular disease worldwide. Although the mortality rate of myocardial infarction (MI) has improved dramatically in recent years due to timely treatment, adverse remodeling of the left ventricle continues to affect cardiac function. Various immune cells are involved in this process to induce inflammation and amplification. The infiltration of inflammatory cells in the infarcted myocardium is induced by various cytokines and chemokines, and the recruitment of leukocytes further amplifies the inflammatory response. As an increasing number of clinical anti-inflammatory therapies have achieved significant success in recent years, treating myocardial infarction by targeting inflammation may become a novel therapeutic option. In particular, successful clinical trials of canakinumab have demonstrated the important role of the inflammatory factor interleukin-1 (IL-1) in atherosclerosis. Targeted IL-1 therapy may decrease inflammation levels and improve cardiac function in patients after myocardial infarction. This article reviews the complex series of responses after myocardial infarction, including the involvement of inflammatory cells and the role of cytokines and chemokines, focusing on the progression of the IL-1 family in myocardial infarction as well as the performance of current targeted therapy drugs in experiments.
Collapse
Affiliation(s)
- Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenlong Kuang
- Department of Cardiology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Chen HS, van Roon L, Schoones J, Zeppenfeld K, DeRuiter MC, Jongbloed MRM. Cardiac sympathetic hyperinnervation after myocardial infarction: a systematic review and qualitative analysis. Ann Med 2023; 55:2283195. [PMID: 38065671 PMCID: PMC10836288 DOI: 10.1080/07853890.2023.2283195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cardiac sympathetic hyperinnervation after myocardial infarction (MI) is associated with arrhythmogenesis and sudden cardiac death. The characteristics of cardiac sympathetic hyperinnervation remain underexposed. OBJECTIVE To provide a systematic review on cardiac sympathetic hyperinnervation after MI, taking into account: (1) definition, experimental model and quantification method and (2) location, amount and timing, in order to obtain an overview of current knowledge and to expose gaps in literature. METHODS References on cardiac sympathetic hyperinnervation were screened for inclusion. The included studies received a full-text review and quality appraisal. Relevant data on hyperinnervation were collected and qualitatively analysed. RESULTS Our literature search identified 60 eligible studies performed between 2000 and 2022. Cardiac hyperinnervation is generally defined as an increased sympathetic nerve density or increased number of nerves compared to another control group (100%). Studies were performed in a multitude of experimental models, but most commonly in male rats with permanent left anterior descending (LAD) artery ligation (male: 63%, rat: 68%, permanent ligation: 93%, LAD: 97%). Hyperinnervation seems to occur mainly in the borderzone. Quantification after MI was performed in regions of interest in µm2/mm2 (41%) or in percentage of nerve fibres (46%) and the reported amount showed a great variation ranging from 439 to 126,718 µm2/mm2. Hyperinnervation seems to start from three days onwards to >3 months without an evident peak, although studies on structural evaluation over time and in the chronic phase were scarce. CONCLUSIONS Cardiac sympathetic hyperinnervation after MI occurs mainly in the borderzone from three days onwards and remains present at later timepoints, for at least 3 months. It is most commonly studied in male rats with permanent LAD ligation. The amount of hyperinnervation differs greatly between studies, possibly due to differential quantification methods. Further studies are required that evaluate cardiac sympathetic hyperinnervation over time and in the chronic phase, in transmural sections, in the female sex, and in MI with reperfusion.
Collapse
Affiliation(s)
- H. Sophia Chen
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lieke van Roon
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Schoones
- Dictorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C. DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R. M. Jongbloed
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Peng Y, Li P, Hu W, Shao Q, Li P, Wen H. Mechanisms by which spinal cord stimulation intervenes in atrial fibrillation: The involvement of the endothelin-1 and nerve growth factor/p75NTR pathways. Open Med (Wars) 2023; 18:20230802. [PMID: 37808162 PMCID: PMC10560034 DOI: 10.1515/med-2023-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Can the spinal cord stimulation (SCS) regulate the autonomic nerves through the endothelin-1 (ET-1) and nerve growth factor (NGF)/p75NTR pathways and thus inhibit the occurrence of atrial fibrillation (AF)? In our research, 16 beagles were randomly divided into a rapid atrial pacing (RAP) group (n = 8) and a RAP + SCS group (n = 8), and the effective refractory period (ERP), ERP dispersion, AF induction rate, and AF vulnerability window (WOV) at baseline, 6 h of RAP, 6 h of RAP + SCS were measured. The atrial tissue was then taken for immunohistochemical analysis to determine the localization of ET-1, NGF, p75NTR, NF-kB p65, and other genes. Our results showed that SCS attenuated the shortening of ERP in all parts caused by RAP, and after 6 h of SCS, the probability of AF in dogs was reduced compared with that in the RAP group. Moreover, the expression of ET-1, NGF, and p75NTR in the atrial tissues of dogs in the RAP + SCS group was significantly increased, but the expression of NF-kB p65 was reduced. In conclusion, SCS promotes the positive remodeling of cardiac autonomic nerves by weakening NFκB p65-dependent pathways to interfere with the ET-1 and NGF/p75NTR pathways to resist the original negative remodeling and inhibit the occurrence of AF.
Collapse
Affiliation(s)
- Yiyan Peng
- Xiaogan Central Hospital Postgraduate Training Base of Jinzhou Medical University, Xiaogan, 432100, Hubei, China
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Peng Li
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, No. 6, Square Street, Xiaonan District, Xiaogan, 432100, Hubei, China
- Xiaogan Central Hospital, Xiaogan, 432100, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wei Hu
- Xiaogan Central Hospital, Xiaogan, 432100, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432100, Hubei, China
| | - Qi Shao
- Xiaogan Central Hospital Postgraduate Training Base of Jinzhou Medical University, Xiaogan, 432100, Hubei, China
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Panpan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432100, Hubei, China
| | - Haiyue Wen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432100, Hubei, China
| |
Collapse
|
4
|
Qi J, Fu LY, Liu KL, Li RJ, Qiao JA, Yu XJ, Yu JY, Li Y, Feng ZP, Yi QY, Jia H, Gao HL, Tan H, Kang YM. Resveratrol in the Hypothalamic Paraventricular Nucleus Attenuates Hypertension by Regulation of ROS and Neurotransmitters. Nutrients 2022; 14:nu14194177. [PMID: 36235829 PMCID: PMC9573276 DOI: 10.3390/nu14194177] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The hypothalamic paraventricular nucleus (PVN) is an important nucleus in the brain that plays a key role in regulating sympathetic nerve activity (SNA) and blood pressure. Silent mating-type information regulation 2 homolog-1 (sirtuin1, SIRT1) not only protects cardiovascular function but also reduces inflammation and oxidative stress in the periphery. However, its role in the central regulation of hypertension remains unknown. It is hypothesized that SIRT1 activation by resveratrol may reduce SNA and lower blood pressure through the regulation of intracellular reactive oxygen species (ROS) and neurotransmitters in the PVN. METHODS The two-kidney one-clip (2K1C) method was used to induce renovascular hypertension in male Sprague-Dawley rats. Then, bilaterally injections of vehicle (artificial cerebrospinal fluid, aCSF, 0.4 μL) or resveratrol (a SIRT1 agonist, 160 μmol/L, 0.4 μL) into rat PVN were performed for four weeks. RESULTS PVN SIRT1 expression was lower in the hypertension group than the sham surgery (SHAM) group. Activated SIRT1 within the PVN lowered systolic blood pressure and plasma norepinephrine (NE) levels. It was found that PVN of 2K1C animals injected with resveratrol exhibited increased expression of SIRT1, copper-zinc superoxide dismutase (SOD1), and glutamic acid decarboxylase (GAD67), as well as decreased activity of nuclear factor-kappa B (NF-κB) p65 and NAD(P)H oxidase (NOX), particularly NOX4. Treatment with resveratrol also decreased expression of ROS and tyrosine hydroxylase (TH). CONCLUSION Resveratrol within the PVN attenuates hypertension via the SIRT1/NF-κB pathway to decrease ROS and restore the balance of excitatory and inhibitory neurotransmitters.
Collapse
Affiliation(s)
- Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Rui-Juan Li
- Department of Infectious Diseases, The Second Affiliated Hospital, Air Force Military Medical University, Xi’an 710038, China
| | - Jin-An Qiao
- Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an 710002, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Jia-Yue Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Ying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Zhi-Peng Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Hong Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Hong Tan
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Correspondence: (H.T.); (Y.-M.K.); Tel./Fax: +86-2982657677 (Y.-M.K.)
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
- Correspondence: (H.T.); (Y.-M.K.); Tel./Fax: +86-2982657677 (Y.-M.K.)
| |
Collapse
|
5
|
Qi L, Wang Y, Hu H, Li P, Hu H, Li Y, Wang K, Zhao Y, Feng M, Lyu H, Yin J, Shi Y, Wang Y, Li X, Yan S. m 6A methyltransferase METTL3 participated in sympathetic neural remodeling post-MI via the TRAF6/NF-κB pathway and ROS production. J Mol Cell Cardiol 2022; 170:87-99. [PMID: 35717715 DOI: 10.1016/j.yjmcc.2022.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Sudden cardiac death caused by ventricular arrhythmias (VAs) is the main cause of high mortality in patients with myocardial infarction (MI). Sympathetic neural remodeling caused by inflammation after MI is closely associated with the occurrence of VAs. METTL3, the earliest identified m6A methyltransferase, is critical in mediating inflammatory responses. Our aim was to investigate whether the m6A methyltransferase METTL3 was involved in sympathetic remodeling post-MI and its specific mechanism. METHODS AND RESULTS A rat MI model was established via left coronary artery ligation. The expression of METTL3, TRAF6, NOX2, and NF-κB increased at 3 days and remained elevated at 7 days after MI, as determined via Western blotting. METTL3 was primarily present in macrophages, as determined via immunofluorescence. Intramyocardial injection of lentivirus carrying METTL3-shRNA inhibited METTL3 expression in vivo. Methylated immunoprecipitation-qPCR determined the METTL3 knockdown inhibited the m6A level of TRAF6 mRNA 3'-UTR. The co-immunoprecipitation experiment proved that METTL3 combines with TRAF6. Western blotting showed that silencing METTL3 inhibited TRAF6 level, NF-κB activation, and ROS production; decreased cytokine release (TNF-α and IL-1β); and downregulated nerve growth factor expression. Finally, METTL3 knockdown reduced sympathetic remodeling after MI, as determined via immunofluorescence assays of tyrosine hydroxylase and growth-associated protein 43. Programmed electrical stimulation, renal sympathetic nerve activity recording, and haemodynamic measurements showed that METTL3 inhibition decreased sympathetic activity and improved cardiac function. CONCLUSIONS Downregulation of METTL3 expression attenuated the excessive sympathetic neural remodeling induced by MI, further reducing the incidence of VAs and improving cardiac function. This was partly associated with the inhibition of the TRAF6/NF-κB pathway and ROS production.
Collapse
Affiliation(s)
- Lei Qi
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ye Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Hui Hu
- Department of Cardiology, Jining No. 1 People' Hospital, Jining, China
| | - Pingjiang Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yan Li
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Kang Wang
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuepeng Zhao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Feng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hangji Lyu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Yin
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yugen Shi
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yu Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Xiaolu Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Suhua Yan
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.
| |
Collapse
|
6
|
Nerve growth factor and post-infarction cardiac remodeling. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The prevalence of sudden death from chronic heart failure and cardiac arrhythmias caused by myocardial infarction is a complex problem in cardiology. Post-infarction cardiac remodeling occurs after myocardial infarction. This compensatory-adaptive reaction, regulated by mechanical, neurohumoral and genetic factors, includes the structural and functional changes of cardiomyocytes, stromal elements and extracellular matrix, geometry and architectonics of the left ventricular cavity. Adverse left ventricular remodeling is associated with heart failure and increased mortality. The concept of post-infarction cardiac remodeling is an urgent problem, since the mechanisms of development and progression of adverse post-infarction changes in the myocardium are completely unexplored. In recent years, the scientist attention has been focused on neurotrophic factors involved in the sympathetic nervous system and the vascular system remodeling after myocardial infarction. Nerve growth factor (NGF) is a protein from the neurotrophin family that is essential for the survival and development of sympathetic and sensory neurons, which also plays an important role in vasculogenesis. Acute myocardial infarction and heart failure are characterized by changes in the expression and activity of neurotrophic factors and their receptors, affecting the innervation of the heart muscle, as well as having a direct effect on cardiomyocytes, endothelial and smooth muscle vascular cells. The identification of the molecular mechanisms involved in the interactions between cardiomyocytes and neurons, as well as the study of the effects of NGF in the cardiovascular system, will improve understanding of the cardiac remodeling mechanism. This review summarizes the available scientific information (2019–2021) about mechanisms of the link between post-infarction cardiac remodeling and NGF functions.
Collapse
|
7
|
Zhou G, Hu T, Du Q, Huang W, Yao C. Nanoparticle-Delivered microRNA-153-3p Alleviates Myocardial Infarction-Induced Myocardial Injury in a Rat Model. ACS Biomater Sci Eng 2022; 8:1696-1705. [PMID: 35255686 DOI: 10.1021/acsbiomaterials.1c01198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although microRNA-153-3p (miR-153-3p) has been demonstrated to confer protective roles in ischemia/reperfusion injury, its potential role in myocardial infarction (MI) remains undefined. Small-molecule modifiers and nanoparticles loaded with microRNAs (miRNAs) have emerged as potential therapeutic reagents for MI treatment. In this study, we prepared liposome nanoparticles, hyaluronic acid (HA)-cationic liposomes (CLPs) complex, for the delivery of miR-153-3p and delineated the mechanistic actions of miR-153-3p modified by nHA-CLPs in MI-induced injury. Our data suggested that nHA-CLPs-loaded miR-153-3p protected cardiomyocytes against MI-induced cardiomyocyte apoptosis and myocardial injury. miR-153-3p was bioinformatically predicted and experimentally verified to bind to Krüppel-like factor 5 (KLF5) 3'UTR and negatively regulate its expression. Hypoxia was adopted to stimulate MI-induced injury to cardiomyocytes in vitro, in which miR-153-3p presented anti-apoptotic potential. However, restoration of KLF5 reversed this anti-apoptotic effect of miR-153-3p. Furthermore, KLF5 was demonstrated to be an activator of the NF-κB pathway. KLF5 enhanced cardiomyocyte apoptosis and inflammation under hypoxic conditions through NF-κB pathway activation, while nHA-CLPs-loaded miR-153-3p suppressed inflammation by blocking the NF-κB pathway. Collectively, our findings suggested the cardioprotective role of miR-153-3p against MI and the successful delivery of miR-153-3p by nHA-CLPs. The identification of KLF5-mediated activation of NF-κB pathway as an apoptotic and inflammatory mechanism aids in better understanding of the biology of MI and development of novel therapeutic strategies for MI.
Collapse
Affiliation(s)
- Guozhong Zhou
- Department of Cardiology, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, P. R. China
| | - Ting Hu
- Department of Hematology, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, P. R. China
| | - Qian Du
- Department of Cardiology, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, P. R. China
| | - Wenjun Huang
- Department of Cardiology, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, P. R. China
| | - Chang Yao
- Department of Cardiology, Jiangxi Pingxiang People's Hospital, Pingxiang 337000, P. R. China
| |
Collapse
|
8
|
Sallam MY, El-Gowilly SM, El-Mas MM. Androgenic modulation of arterial baroreceptor dysfunction and neuroinflammation in endotoxic male rats. Brain Res 2021; 1756:147330. [PMID: 33539800 DOI: 10.1016/j.brainres.2021.147330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/04/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
Autonomic neuropathy contributes to cardiovascular derangements induced by endotoxemia. In this communication, we tested the hypothesis that androgenic hormones improve arterial baroreflex dysfunction and predisposing neuroinflammatory response caused by endotoxemia in male rats. Baroreflex curves relating changes in heart rate to increases or decreases in blood pressure evoked by phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious sham-operated, castrated, and testosterone-replaced castrated rats treated with or without lipopolysaccharide (LPS, 10 mg/kg i.v.). Slopes of baroreflex curves were taken as measures of baroreflex sensitivity (BRS). In sham rats, LPS significantly reduced reflex bradycardia (BRSPE) and tachycardia (BRSSNP) and increased immunohistochemical expression of nuclear factor kappa B (NFκB) in heart and brainstem neurons of nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM). The baroreflex depressant effect of LPS was maintained in castrated rats despite the remarkably attenuated inflammatory response. Testosterone replacement of castrated rats counteracted LPS-evoked BRSPE, but not BRSSNP, depression and increased cardiac, but not neuronal, NFκB expression. We also evaluated whether LPS responses could be affected following pharmacologic inhibition of androgenic biosynthetic pathways. Whereas none of LPS effects were altered in rats pretreated with formestane (aromatase inhibitor) or finasteride (5α-reductase inhibitor), the LPS-evoked BRSPE, but not BRSSNP, depression and cardiac and neuronal inflammation disappeared in rats pretreated with degarelix (gonadotropin-releasing hormone receptor blocker). Overall, despite the seemingly provocative role for the hypothalamic-pituitary-gonadal axis in the neuroinflammatory and baroreflex depressant effects of LPS, testosterone appears to distinctly modulate the two LPS effects.
Collapse
Affiliation(s)
- Marwa Y Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
9
|
Kaul L, Süss R, Zannettino A, Richter K. The revival of dithiocarbamates: from pesticides to innovative medical treatments. iScience 2021; 24:102092. [PMID: 33598645 PMCID: PMC7868997 DOI: 10.1016/j.isci.2021.102092] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dithiocarbamates (DTCs) have been used for various applications, including as hardening agents in rubber manufacturing, as fungicide in agriculture, and as medications to treat alcohol misuse disorder. The multi-faceted effects of DTCs rely mainly on metal binding abilities and a high reactivity with thiol groups. Therefore, the list of potential applications is still increasing, exemplified by the US Food and Drug Administration approval of disulfiram (Antabuse) and its metabolite diethyldithiocarbamate in clinical trials against cancer, human immunodeficiency virus, and Lyme disease, as well as new DTC-related compounds that have been synthesized to target diseases with unmet therapeutic needs. In this review, we will discuss the latest progress of DTCs as anti-cancer agents and provide a summary of the mechanisms of action. We will explain the expansion of DTCs' activity in the fields of microbiology, neurology, cardiology, and ophthalmology, thereby providing evidence for the important role and therapeutic potential of DTCs as innovative medical treatments.
Collapse
Affiliation(s)
- Laurine Kaul
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA 5011, Australia
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| | - Andrew Zannettino
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5011, Australia
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
10
|
Wei X, Sun C, Zhou RP, Ma GG, Yang Y, Lu C, Hu W. Nerve growth factor promotes ASIC1a expression via the NF-κB pathway and enhances acid-induced chondrocyte apoptosis. Int Immunopharmacol 2020; 82:106340. [PMID: 32146316 DOI: 10.1016/j.intimp.2020.106340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
Nerve growth factor (NGF) is a neurotrophic factor that is thought to have a broad role in the nervous system and tumors, and has recently been described as a mediator of inflammation. It is not clear whether or not NGF participates in apoptosis of articular chondrocytes. In this study, we determined if NGF affects ASIC1a expression and NF-κB P65 activation in rat chondrocytes, and measured the effectiveness of NGF on apoptotic protein expression in acid-induced chondrocytes. NGF was shown to up-regulate the level of ASIC1a in a dose- and time-dependent fashion. Simultaneously, NGF activated NF-κB P65 in chondrocytes. Additionally, the elevated ASIC1a expression induced by NGF was eliminated by the NF-κB inhibitor (PDTC) in chondrocytes. Moreover, NGF reduced cell viability and induced LDH release under the premise of acid-induced articular chondrocytes. Furthermore, NGF could enhance cleaved-caspase 9 and cleaved-PARP expression in acid-pretreated chondrocytes, and which could be inhibited by using psalmotoxin 1(PcTX1) or PDTC. Together, these results indicated that NGF may up-regulate ASIC1a expression through the NF-κB signaling pathway, and further promote acid-induced apoptosis of chondrocytes.
Collapse
Affiliation(s)
- Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Cheng Sun
- Department of Pharmacology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|