1
|
Zhang Q, Xu Z, Guo JF, Shen SH. Single-Cell Transcriptome Reveals Cell Type-Specific Molecular Pathology in a 2VO Cerebral Ischemic Mouse Model. Mol Neurobiol 2024; 61:5248-5264. [PMID: 38180614 PMCID: PMC11249492 DOI: 10.1007/s12035-023-03755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/30/2023] [Indexed: 01/06/2024]
Abstract
Post-ischemia memory impairment is a major sequela in cerebral ischemia patients. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood. In this study, we adopted a mouse two-vessel occlusion ischemia model (2VO model) to mimic cerebral ischemia-induced memory impairment and investigated the single-cell transcriptome in the hippocampi in 2VO mice. A total of 27,069 cells were corresponding 14 cell types with neuronal, glial, and vascular lineages. We next analyzed cell-specific gene alterations in 2VO mice and the function of these cell-specific genes. Differential expression analysis identified cell type-specific genes with altered expression in neurons, astrocytes, microglia, and oligodendrocytes in 2VO mice. Notably, four subtypes of oligodendrocyte precursor cells with distinct differentiation pathways were suggested. Taken together, this is the first single-cell transcriptome analysis of gene expression in a 2VO model. Furthermore, we suggested new types of oligodendrocyte precursor cells with angiogenesis and neuroprotective potential, which might offer opportunities to identify new avenues of research and novel targets for ischemia treatment.
Collapse
Affiliation(s)
- Qian Zhang
- The First Affiliated Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, 361003, China
| | - Zhong Xu
- The First Affiliated Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, 361003, China
| | - Jian-Feng Guo
- The First Affiliated Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, 361003, China
| | - Shang-Hang Shen
- The First Affiliated Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
2
|
Prehn A, Hobusch C, Härtig W, Michalski D, Krueger M, Flachmeyer B. Increasing reproducibility in preclinical stroke research: the correlation of immunofluorescence intensity measurements and Western blot analyses strongly depends on antibody clonality and tissue pre-treatment in a mouse model of focal cerebral ischemia. Front Cell Neurosci 2023; 17:1183232. [PMID: 37342767 PMCID: PMC10277931 DOI: 10.3389/fncel.2023.1183232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
In the setting of stroke, ischemia not only impairs neuronal function, but also detrimentally affects the different components of the neurovascular unit, which are shown to be involved in the transition from reversible to long-lasting tissue damage. In this context, the glial proteins myelin basic protein (MBP) and the 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) as well as the vasculature-associated basement membrane proteins laminin and collagen IV have been identified as ischemia-sensitive elements. However, available data from immunofluorescence and Western blot analyses are often found to be contradictory, which renders interpretation of the respective data rather difficult. Therefore, the present study investigates the impact of tissue pre-treatment and antibody clonality on immunofluorescence measurements of the mentioned proteins in a highly reproducible model of permanent middle cerebral artery occlusion. Here, immunofluorescence labeling using polyclonal antibodies revealed an increased immunofluorescence intensity of MBP, CNP, laminin and collagen IV in ischemic areas, although Western blot analyses did not reveal increased protein levels. Importantly, contrary to polyclonal antibodies, monoclonal ones did not provide increased fluorescence intensities in ischemic areas. Further, we were able to demonstrate that different ways of tissue pre-treatment including paraformaldehyde fixation and antigen retrieval may not only impact on fluorescence intensity measurements in general, but rather one-sidedly affect either ischemic or unaffected tissue. Therefore, immunofluorescence intensity measurements do not necessarily correlate with the actual protein levels, especially in ischemia-affected tissue and should always be complemented by different techniques to enhance reproducibility and to hopefully overcome the translational roadblock from bench to bedside.
Collapse
Affiliation(s)
- Anna Prehn
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | | | - Martin Krueger
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
3
|
Vicente-Acosta A, Ceprian M, Sobrino P, Pazos MR, Loría F. Cannabinoids as Glial Cell Modulators in Ischemic Stroke: Implications for Neuroprotection. Front Pharmacol 2022; 13:888222. [PMID: 35721207 PMCID: PMC9199389 DOI: 10.3389/fphar.2022.888222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is the second leading cause of death worldwide following coronary heart disease. Despite significant efforts to find effective treatments to reduce neurological damage, many patients suffer from sequelae that impair their quality of life. For this reason, the search for new therapeutic options for the treatment of these patients is a priority. Glial cells, including microglia, astrocytes and oligodendrocytes, participate in crucial processes that allow the correct functioning of the neural tissue, being actively involved in the pathophysiological mechanisms of ischemic stroke. Although the exact mechanisms by which glial cells contribute in the pathophysiological context of stroke are not yet completely understood, they have emerged as potentially therapeutic targets to improve brain recovery. The endocannabinoid system has interesting immunomodulatory and protective effects in glial cells, and the pharmacological modulation of this signaling pathway has revealed potential neuroprotective effects in different neurological diseases. Therefore, here we recapitulate current findings on the potential promising contribution of the endocannabinoid system pharmacological manipulation in glial cells for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Ceprian
- ERC Team, PGNM, INSERM U1315, CNRS UMR5261, University of Lyon 1, University of Lyon, Lyon, France
| | - Pilar Sobrino
- Departamento de Neurología, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Maria Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Frida Loría
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| |
Collapse
|
4
|
Michalski D, Reimann W, Spielvogel E, Mages B, Biedermann B, Barthel H, Nitzsche B, Schob S, Härtig W. Regionally Altered Immunosignals of Surfactant Protein-G, Vascular and Non-Vascular Elements of the Neurovascular Unit after Experimental Focal Cerebral Ischemia in Mice, Rats, and Sheep. Int J Mol Sci 2022; 23:ijms23115875. [PMID: 35682557 PMCID: PMC9180438 DOI: 10.3390/ijms23115875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 01/12/2023] Open
Abstract
The surfactant protein-G (SP-G) has recently been discovered in the brain and linked to fluid balance regulations. Stroke is characterized by impaired vessel integrity, promoting water influx and edema formation. The neurovascular unit concept (NVU) has been generated to cover not only ischemic affections of neurons or vessels but also other regionally associated cells. This study provides the first spatio-temporal characterization of SP-G and NVU elements after experimental stroke. Immunofluorescence labeling was applied to explore SP-G, vascular and cellular markers in mice (4, 24, and 72 h of ischemia), rats (24 h of ischemia), and sheep (two weeks of ischemia). Extravasated albumin indicated vascular damage within ischemic areas. Quantifications revealed decreasing SP-G signals in the ischemia-affected neocortex and subcortex. Inverse immunosignals of SP-G and vascular elements existed throughout all models. Despite local associations between SP-G and the vasculature, a definite co-localization was not seen. Along with a decreased SP-G-immunoreactivity in ischemic areas, signals originating from neurons, glial elements, and the extracellular matrix exhibited morphological alterations or changed intensities. Collectively, this study revealed regional alterations of SP-G, vascular, and non-vascular NVU elements after ischemia, and may thus stimulate the discussion about the role of SP-G during stroke.
Collapse
Affiliation(s)
- Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; (W.R.); (E.S.)
- Correspondence: ; Tel.: +49-341-9724339
| | - Willi Reimann
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; (W.R.); (E.S.)
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (B.B.); (W.H.)
| | - Emma Spielvogel
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; (W.R.); (E.S.)
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (B.B.); (W.H.)
| | - Bianca Mages
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany;
| | - Bernd Biedermann
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (B.B.); (W.H.)
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Stephanstr. 11, 04103 Leipzig, Germany; (H.B.); (B.N.)
| | - Björn Nitzsche
- Department of Nuclear Medicine, University of Leipzig, Stephanstr. 11, 04103 Leipzig, Germany; (H.B.); (B.N.)
- Institute of Anatomy, Histology, and Embryology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Stefan Schob
- Department of Neuroradiology, University of Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany;
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (B.B.); (W.H.)
| |
Collapse
|
5
|
Michalski D, Spielvogel E, Puchta J, Reimann W, Barthel H, Nitzsche B, Mages B, Jäger C, Martens H, Horn AKE, Schob S, Härtig W. Increased Immunosignals of Collagen IV and Fibronectin Indicate Ischemic Consequences for the Neurovascular Matrix Adhesion Zone in Various Animal Models and Human Stroke Tissue. Front Physiol 2020; 11:575598. [PMID: 33192578 PMCID: PMC7649770 DOI: 10.3389/fphys.2020.575598] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke causes cellular alterations in the “neurovascular unit” (NVU) comprising neurons, glia, and the vasculature, and affects the blood-brain barrier (BBB) with adjacent extracellular matrix (ECM). Limited data are available for the zone between the NVU and ECM that has not yet considered for neuroprotective approaches. This study describes ischemia-induced alterations for two main components of the neurovascular matrix adhesion zone (NMZ), i.e., collagen IV as basement membrane constituent and fibronectin as crucial part of the ECM, in conjunction with traditional NVU elements. For spatio-temporal characterization of these structures, multiple immunofluorescence labeling was applied to tissues affected by focal cerebral ischemia using a filament-based model in mice (4, 24, and 72 h of ischemia), a thromboembolic model in rats (24 h of ischemia), a coagulation-based model in sheep (2 weeks of ischemia), and human autoptic stroke tissue (3 weeks of ischemia). An increased fibronectin immunofluorescence signal demarcated ischemia-affected areas in mice, along with an increased collagen IV signal and BBB impairment indicated by serum albumin extravasation. Quantifications revealed a region-specific pattern with highest collagen IV and fibronectin intensities in most severely affected neocortical areas, followed by a gradual decline toward the border zone and non-affected regions. Comparing 4 and 24 h of ischemia, the subcortical fibronectin signal increased significantly over time, whereas neocortical areas displayed only a gradual increase. Qualitative analyses confirmed increased fibronectin and collagen IV signals in ischemic areas from all tissues and time points investigated. While the increased collagen IV signal was restricted to vessels, fibronectin appeared diffusely arranged in the parenchyma with focal accumulations associated to the vasculature. Integrin α5 appeared enriched in the vicinity of fibronectin and vascular elements, while most of the non-vascular NVU elements showed complementary staining patterns referring to fibronectin. This spatio-temporal characterization of ischemia-related alterations of collagen IV and fibronectin in various stroke models and human autoptic tissue shows that ischemic consequences are not limited to traditional NVU components and the ECM, but also involve the NMZ. Future research should explore more components and the pathophysiological properties of the NMZ as a possible target for novel neuroprotective approaches.
Collapse
Affiliation(s)
| | - Emma Spielvogel
- Department of Neurology, University of Leipzig, Leipzig, Germany.,Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Joana Puchta
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.,Department of Neuroradiology, University of Leipzig, Leipzig, Germany
| | - Willi Reimann
- Department of Neurology, University of Leipzig, Leipzig, Germany.,Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Björn Nitzsche
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany.,Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Bianca Mages
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Carsten Jäger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | | | - Anja K E Horn
- Institute of Anatomy and Cell Biology I and German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Schob
- Department of Neuroradiology, University of Leipzig, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|