1
|
Ak ET, Okuyucu B, Hatipoğlu B, Arslan G. The effect of acetylcholinesterase inhibitor rivastigmine in pentylenetetrazole-induced kindling model of epilepsy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03679-3. [PMID: 39643806 DOI: 10.1007/s00210-024-03679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
This study aimed to investigate the role of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor rivastigmine (RIVA) in the pentylenetetrazole (PTZ)- induced kindling model of epilepsy. The current study consists of three steps; 1) Saline or RIVA (0.5, 1, and 2 mg/kg) was administered intraperitoneally (i.p.) 15 min before PTZ (35 mg/kg) during the kindling process and seizure behaviors were observed; 2) Single doses of RIVA (0.25, 0.5, and 1 mg/kg; i.p.) was administered to the electrode implanted kindled rats 15 min before PTZ and electrocorticogram (ECoG) recordings were obtained; 3) Low-dose of RIVA (0.5 mg/kg) was administered to the kindled rats for 14 consecutive days and after 24 h PTZ was administered and ECoG recordings were obtained. In addition, 24 h after the PTZ injection, the hippocampus was extracted and mRNA expression levels of N-methyl D-aspartate receptor subunit 2B (NR2B) and brain-derived neurotrophic factor (BDNF) were measured by qPCR analysis. Only low-dose of RIVA increased resistance against kindling. Single and long-term administration of low-dose RIVA increased the latency to the first myoclonic jerk, decreased the duration of generalized tonic-clonic seizures, and reduced the seizure stage in kindled rats. Long-term low-dose RIVA treatment decreased the mRNA expressions of NR2B and BDNF, which were increased after PTZ kindling. Low-dose of RIVA showed anticonvulsant properties, while high doses did not. RIVA exerts its anticonvulsant effect probably through NMDAR-BDNF pathways. Our results suggest that the use of RIVA may not be harmful and even reduce seizure severity in epileptic patients with convulsions.
Collapse
Affiliation(s)
- Elif Türkdönmez Ak
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Büşra Okuyucu
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Burcu Hatipoğlu
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Medical School, University of Ondokuz Mayis, Samsun, 55139, Türkiye.
| |
Collapse
|
2
|
Ovey IS, Ozsimsek A, Velioglu HA, Altay O, Mardinoglu A, Yulug B. EGb 761 reduces Ca 2+ influx and apoptosis after pentylenetetrazole treatment in a neuroblastoma cell line. Front Cell Neurosci 2023; 17:1195303. [PMID: 37744878 PMCID: PMC10516604 DOI: 10.3389/fncel.2023.1195303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
Background Transient receptor potential (TRP) channels have been found to have significant implications in neuronal outgrowth, survival, inflammatory neurogenic pain, and various epileptogenic processes. Moreover, there is a growing body of evidence indicating that transient receptor potential (TRP) channels have a significant impact on epilepsy and its drug-resistant subtypes. Objective We postulated that EGb 761 would modulate TRPA1 channels, thereby exhibiting anti-inflammatory and neuroprotective effects in a neuroblastoma cell line. Our rationale was to investigate the impact of EGb 761 in a controlled model of pentylenetetrazole-induced generalized epilepsy. Methodology We evaluated the neuroprotective, antioxidant and anti-apoptotic effects of EGb 761 both before and after the pentylenetetrazole application in a neuroblastoma cell line. Specifically, we focused on the effects of EGB 761 on the activity of Transient receptor potential (TRP) channels. Results EGb 761 applications both before and after the pentylenetetrazole incubation period reduced Ca release and restored apoptosis, ROS changes, mitochondrial depolarization and caspase levels, suggesting a prominent prophylactic and therapeutic effect of EGb 761 in the pentylenetetrazole-induced epileptogenesis process. Conclusion Our basic mechanistic framework for elucidating the pathophysiological significance of fundamental ion mechanisms in a pentylenetetrazole treated neuroblastoma cell line provided compelling evidence for the favorable efficacy and safety profile of Egb 761 in human-relevant in vitro model of epilepsy. To the best of our knowledge, this is the first study to investigate the combined effects of EGb 761 and pentylenetetrazole on TRP channels and measure their activation level in a relevant model of human epileptic diseases.
Collapse
Affiliation(s)
- Ishak Suat Ovey
- Department of Physiology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Ahmet Ozsimsek
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Halil Aziz Velioglu
- Department of Neuroscience, Faculty of Medicine, Istanbul Medipol University, Istanbul, Türkiye
- Center for Psychiatric Neuroscience, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ozlem Altay
- KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Türkiye
- Department of Neuroscience, Faculty of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
3
|
Nkwingwa BK, Wado EK, Foyet HS, Bouvourne P, Jugha VT, Mambou AHMY, Bila RB, Taiwe GS. Ameliorative effects of Albizia adianthifolia aqueous extract against pentylenetetrazole-induced epilepsy and associated memory loss in mice: Role of GABAergic, antioxidant defense and anti-inflammatory systems. Biomed Pharmacother 2023; 165:115093. [PMID: 37392651 DOI: 10.1016/j.biopha.2023.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Albizia adianthifolia (Schumach.) (Fabaceae) is a medicinal herb used for the treatment of epilepsy and memory impairment. This study aims to investigate the anticonvulsant effects of Albizia adianthifolia aqueous extract against pentylenetetrazole (PTZ)-induced spontaneous convulsions in mice; and determine whether the extract could mitigate memory impairment, oxidative/nitrergic stress, GABA depletion and neuroinflammation. Ultra-high performance liquid chromatography/mass spectrometry analysis was done to identify active compounds from the extract. Mice were injected with PTZ once every 48 h until kindling was developed. Animals received distilled water for the normal group and negative control groups, doses of extract (40, 80, or 160 mg/kg) for the test groups and sodium valproate (300 mg/kg) for the positive control group. Memory was measured using Y maze, novel object recognition (NOR) and open field paradigms, while the oxidative/nitrosative stresses (MDA, GSH, CAT, SOD and NO), GABAergic transmission (GABA, GABA-T and GAD) and neuro-inflammation (TNF-α, IFN-γ, IL- 1β, and IL-6) were determined. Brain photomicrograph was also studied. Apigenin, murrayanine and safranal were identified in the extract. The extract (80-160 mg/kg) significantly protected mice against seizures and mortality induced by PTZ. The extract significantly increased the spontaneous alternation and the discrimination index in the Y maze and NOR tests, respectively. PTZ kindling induced oxidative/nitrosative stress, GABA depletion, neuroinflammation and neuronal cells death was strongly reversed by the extract. The results suggest that the anticonvulsant activity of Albizia adianthifolia extract is accompanied by its anti-amnesic property, and may be supported by the amelioration of oxidative stress, GABAergic transmission and neuroinflammation.
Collapse
Affiliation(s)
- Balbine Kamleu Nkwingwa
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Eglantine Keugong Wado
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Harquin Simplice Foyet
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Parfait Bouvourne
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Vanessa Tita Jugha
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Alain Hart Mann Youbi Mambou
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Raymond Bess Bila
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| |
Collapse
|
4
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
5
|
Heydari FS, Gorji Valokola M, Mehri S, Abnous K, Roohbakhsh A. The blockade of transient receptor potential ankyrin 1 (TRPA1) protects against PTZ-induced seizure. Metab Brain Dis 2023; 38:621-630. [PMID: 36399240 DOI: 10.1007/s11011-022-01123-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
Treatment of epilepsy remains a major problem as some epileptic patients do not respond to the current therapeutics. Transient receptor potential ankyrin 1 (TRPA1) belongs to the TRP channels and has diverse physiological functions in the body. Considering its physiological properties, we aimed to evaluate its role in two experimental models of epilepsy, including pentylenetetrazol (PTZ)-induced acute seizure and PTZ-evoked kindling. Furthermore, the TRPA1 protein levels were assessed in the cerebral cortex, hippocampus, and cerebellum after seizure induction. Three groups of Wistar rats received acute intraperitoneal injection of pentylenetetrazol (PTZ, 85 mg/kg). The groups received intraventricular injections of vehicle (dimethyl sulfoxide, Tween 80, and sterile 0.9% saline), valproate (30 µg/rat), or HC030031 (TRPA1 antagonist, 14 µg/rat) before PTZ injection. In the PTZ-induced kindling model, PTZ was administrated 35 mg/kg every other day for 24 days. PTZ gradually provoked seizure-related behaviors. After experiments, the TRPA1 levels in the brain were assessed using western blot. The results showed that HC030031 reduced the median of seizure scores and S5 duration while increasing S2 and S5 latencies in acute and kindling models. The anticonvulsant effect of HC030031 was comparable with valproate as a standard anticonvulsant drug. Furthermore, induction of seizure, either acute or kindling, enhanced TRPA1 levels in the cerebral cortex, hippocampus, and cerebellum that were prevented by HC030031 or valproate administration. The results of this study showed that HC030031 as a TRPA1 receptor antagonist promoted a significant anticonvulsant effect comparable with valproate. Both drugs prevented TRPA1 upregulation during seizures. These findings imply that TRPA1 is a potential target in treating epilepsy.
Collapse
Affiliation(s)
- Fatemeh Sadat Heydari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Gorji Valokola
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Brain and Spinal Injury Repair Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Cannabidiol inhibits microglia activation and mitigates neuronal damage induced by kainate in an in-vitro seizure model. Neurobiol Dis 2022; 174:105895. [DOI: 10.1016/j.nbd.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
|
7
|
Anderson LL, Doohan PT, Hawkins NA, Bahceci D, Thakur GA, Kearney JA, Arnold JC, Arnold JC. The endocannabinoid system impacts seizures in a mouse model of Dravet syndrome. Neuropharmacology 2022; 205:108897. [PMID: 34822817 PMCID: PMC9514665 DOI: 10.1016/j.neuropharm.2021.108897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/07/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Dravet syndrome is a catastrophic childhood epilepsy with multiple seizure types that are refractory to treatment. The endocannabinoid system regulates neuronal excitability so a deficit in endocannabinoid signaling could lead to hyperexcitability and seizures. Thus, we sought to determine whether a deficiency in the endocannabinoid system might contribute to seizure phenotypes in a mouse model of Dravet syndrome and whether enhancing endocannabinoid tone is anticonvulsant. Scn1a+/- mice model the clinical features of Dravet syndrome: hyperthermia-induced seizures, spontaneous seizures and reduced survival. We examined whether Scn1a+/- mice exhibit deficits in the endocannabinoid system by measuring brain cannabinoid receptor expression and endocannabinoid concentrations. Next, we determined whether pharmacologically enhanced endocannabinoid tone was anticonvulsant in Scn1a+/- mice. We used GAT229, a positive allosteric modulator of the cannabinoid (CB1) receptor, and ABX-1431, a compound that inhibits the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG). The Scn1a+/- phenotype is strain-dependent with mice on a 129S6/SvEvTac (129) genetic background having no overt phenotype and those on an F1 (129S6/SvEvTac x C57BL/6J) background exhibiting a severe epilepsy phenotype. We observed lower brain cannabinoid CB1 receptor expression in the seizure-susceptible F1 compared to seizure-resistant 129 strain, suggesting an endocannabinoid deficiency might contribute to seizure susceptibility. GAT229 and ABX-1431 were anticonvulsant against hyperthermia-induced seizures. However, subchronic ABX1431 treatment increased spontaneous seizure frequency despite reducing seizure severity. Cnr1 is a putative genetic modifier of epilepsy in the Scn1a+/- mouse model of Dravet syndrome. Compounds that increase endocannabinoid tone could be developed as novel treatments for Dravet syndrome.
Collapse
Affiliation(s)
- Lyndsey L. Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Peter T. Doohan
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Nicole A. Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Dilara Bahceci
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, MA 02115, USA
| | - Jennifer A. Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jonathon C. Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia,Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia,Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, NSW 2050, Australia.
| |
Collapse
|
8
|
Khaksar S, Salimi M, Zeinoddini H, Naderi N. The Role of the Possible Receptors and Intracellular Pathways in Protective Effect of Exogenous Anandamide in Kindling Model of Epilepsy. Neurochem Res 2022; 47:1226-1242. [PMID: 35112235 DOI: 10.1007/s11064-021-03517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022]
Abstract
In this research, the involvement of CB1 and TRPV1 receptors in the possible protective effects of anandamide were investigated in the kindling model of epilepsy. The basolateral amygdala of the rat brain was chosen to put stimulating electrodes. Semi-rapid kindling was induced by a repetitive sub-threshold stimulation for 5-9 consecutive days. There were seven groups, six of which were kindled and used for drug testing by intracerebroventricular (i.c.v.) microinjection. (i) Sham, (ii) control group received vehicles, (iii) anandamide (AEA; 100 ng/rat), (iv) capsazepine (TRPV1 antagonist; 100 ng/rat), (v) AM251 (CB1 antagonist; 100 ng/rat), (vi) AM251 + anandamide, and (vii) capsazepine + anandamide. The after-discharge duration, seizure duration, and stage five duration were measured in rats. Moreover, the expressions of the extracellular signal-regulated kinase (ERK) and the cAMP responsive element binding (CREB) proteins in the hippocampus were also studied. The anandamide-treated group showed a significant decrease in seizure scores, while no change was shown in seizure scores in the capsazepine- and AM251-treated groups compared with the control group. Co-administrations of either capsazepine + AEA or AM251 + AEA attenuated the protective effect of AEA against seizure. Furthermore, the group received AEA showed a decrease in the expressions of CREB and p-CREB possibly through the activation of the CB1 and TRPV1 receptors. Activation of CB1 and TRPV1 receptors might be involved in AEA anticonvulsant effect in kindling model of epilepsy. This effect could be due to suppression of CREB phosphorylation in hippocampal neurons.
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Biological Sciences, Alzahra University, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Hadi Zeinoddini
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, 1996835113, Tehran, Iran
| | - Nima Naderi
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, 1996835113, Tehran, Iran. .,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ji X, Zeng Y, Wu J. The CB 2 Receptor as a Novel Therapeutic Target for Epilepsy Treatment. Int J Mol Sci 2021; 22:ijms22168961. [PMID: 34445666 PMCID: PMC8396521 DOI: 10.3390/ijms22168961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023] Open
Abstract
Epilepsy is characterized by repeated spontaneous bursts of neuronal hyperactivity and high synchronization in the central nervous system. It seriously affects the quality of life of epileptic patients, and nearly 30% of individuals are refractory to treatment of antiseizure drugs. Therefore, there is an urgent need to develop new drugs to manage and control refractory epilepsy. Cannabinoid ligands, including selective cannabinoid receptor subtype (CB1 or CB2 receptor) ligands and non-selective cannabinoid (synthetic and endogenous) ligands, may serve as novel candidates for this need. Cannabinoid appears to regulate seizure activity in the brain through the activation of CB1 and CB2 cannabinoid receptors (CB1R and CB2R). An abundant series of cannabinoid analogues have been tested in various animal models, including the rat pilocarpine model of acquired epilepsy, a pentylenetetrazol model of myoclonic seizures in mice, and a penicillin-induced model of epileptiform activity in the rats. The accumulating lines of evidence show that cannabinoid ligands exhibit significant benefits to control seizure activity in different epileptic models. In this review, we summarize the relationship between brain CB2 receptors and seizures and emphasize the potential mechanisms of their therapeutic effects involving the influences of neurons, astrocytes, and microglia cells. The unique features of CB2Rs, such as lower expression levels under physiological conditions and high inducibility under epileptic conditions, make it an important target for future research on drug-resistant epilepsy.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
| | - Yang Zeng
- Medical Education Assessment and Research Center, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
- Correspondence: or
| |
Collapse
|
10
|
Vitale RM, Iannotti FA, Amodeo P. The (Poly)Pharmacology of Cannabidiol in Neurological and Neuropsychiatric Disorders: Molecular Mechanisms and Targets. Int J Mol Sci 2021; 22:4876. [PMID: 34062987 PMCID: PMC8124847 DOI: 10.3390/ijms22094876] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cannabidiol (CBD), the major nonpsychoactive Cannabis constituent, has been proposed for the treatment of a wide panel of neurological and neuropsychiatric disorders, including anxiety, schizophrenia, epilepsy and drug addiction due to the ability of its versatile scaffold to interact with diverse molecular targets that are not restricted to the endocannabinoid system. Albeit the molecular mechanisms responsible for the therapeutic effects of CBD have yet to be fully elucidated, many efforts have been devoted in the last decades to shed light on its complex pharmacological profile. In particular, an ever-increasing number of molecular targets linked to those disorders have been identified for this phytocannabinoid, along with the modulatory effects of CBD on their cascade signaling. In this view, here we will try to provide a comprehensive and up-to-date overview of the molecular basis underlying the therapeutic effects of CBD involved in the treatment of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
| |
Collapse
|
11
|
Anderson LL, Ametovski A, Lin Luo J, Everett-Morgan D, McGregor IS, Banister SD, Arnold JC. Cannabichromene, Related Phytocannabinoids, and 5-Fluoro-cannabichromene Have Anticonvulsant Properties in a Mouse Model of Dravet Syndrome. ACS Chem Neurosci 2021; 12:330-339. [PMID: 33395525 DOI: 10.1021/acschemneuro.0c00677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cannabis-based products are increasingly being used to treat refractory childhood epilepsies such as Dravet syndrome. Cannabis contains at least 140 terpenophenolic compounds known as phytocannabinoids. These include the known anticonvulsant compound cannabidiol (CBD) and several molecules showing emergent anticonvulsant properties in animal models. Cannabichromene (CBC) is a phytocannabinoid frequently detected in artisanal cannabis oils used in the community by childhood epilepsy patients. Here we examined the brain and plasma pharmacokinetic profiles of CBC, cannabichromenic acid (CBCA), cannabichromevarin (CBCV), and cannabichromevarinic acid (CBCVA) following intraperitoneal administration in mice. The anticonvulsant potential of each was then tested against hyperthermia-induced seizures in the Scn1a+/- mouse model of Dravet syndrome. All phytocannabinoids within the CBC series were readily absorbed and showed substantial brain penetration (brain-plasma ratios ranging from 0.2 to 5.8). Anticonvulsant efficacy was evident with CBC, CBCA, and CBCVA, each significantly increasing the temperature threshold at which Scn1a+/- mice had a generalized tonic-clonic seizure. We synthesized a fluorinated derivative of CBC (5-fluoro-CBC), which showed improved brain penetration relative to the parent CBC molecule but not any greater anticonvulsant effect. Since CBC and derivatives are anticonvulsant in a model of intractable pediatric epilepsy, they may constitute part of the mechanism through which artisanal cannabis oils are anticonvulsant in patients.
Collapse
Affiliation(s)
- Lyndsey L. Anderson
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia
| | - Adam Ametovski
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jia Lin Luo
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Declan Everett-Morgan
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia
| | - Iain S. McGregor
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Samuel D. Banister
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jonathon C. Arnold
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|