1
|
Oluwole OG. The analyses of human MCPH1 DNA repair machinery and genetic variations. Open Med (Wars) 2024; 19:20240917. [PMID: 38463519 PMCID: PMC10921449 DOI: 10.1515/med-2024-0917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/29/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Causal mutations in the MCPH1 gene have been associated with disorders like microcephaly, and recently congenital hearing impairment. This study examined the MCPH1 DNA repair machinery and identified genetic variations of interest in gnomAD database to discuss the biological roles and effects of rare variants in MCPH1-related diseases. Notably, MCPH1 coordinates two of the seven known mechanisms of DNA repair which confirmed its roles in neurogenesis and chromatin condensation. A pathogenic missense variant in MCPH1 p.Gly753Arg, and two pathogenic frameshifts MCPH1 p.Asn189LysfsTer15 and p.Cys624Ter identified in this study, already had entries in ClinVar and were associated with microcephaly. A pathogenic frameshift in MCPH1 p.Val10SerfsTer5 with a loss-of-function flag and a pathogenic stop gained p.Ser571Ter variants with ultra-rare allele frequency (MAF ≤ 0.001) were identified but have not been linked to any phenotype. The predicted pathogenic ultra-rare variants identified in this study, warranty phenotypic discovery, and also positioned these variants or nearby deleterious variants candidate for screening in MCPH1-associated rare diseases.
Collapse
Affiliation(s)
- Oluwafemi G Oluwole
- Biomedical Research Centre, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Division of Human Genetics, University of Cape Town, Cape Town, South Africa
- Non-communicable Diseases Department, Institute of Primate Research, Nairobi, Kenya
| |
Collapse
|
2
|
Yang S, Xie BL, Dong XP, Wang LX, Zhu GH, Wang T, Wu WJ, Lai RS, Tao R, Guan MX, Chen FY, Tan DH, Deng Z, Xie HP, Zeng Y, Xiao ZA, Xie DH. cdh23 affects congenital hearing loss through regulating purine metabolism. Front Mol Neurosci 2023; 16:1079529. [PMID: 37575969 PMCID: PMC10416109 DOI: 10.3389/fnmol.2023.1079529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction The pathogenic gene CDH23 plays a pivotal role in tip links, which is indispensable for mechanoelectrical transduction in the hair cells. However, the underlying molecular mechanism and signal regulatory networks that influence deafness is still largely unknown. Methods In this study, a congenital deafness family, whole exome sequencing revealed a new mutation in the pathogenic gene CDH23, subsequently; the mutation has been validated using Sanger sequencing method. Then CRISPR/Cas9 technology was employed to knockout zebrafish cdh23 gene. Startle response experiment was used to compare with wide-type, the response to sound stimulation between wide-type and cdh23-/-. To further illustrate the molecular mechanisms underlying congenital deafness, comparative transcriptomic profiling and multiple bioinformatics analyses were performed. Results The YO-PRO-1 assay result showed that in cdh23 deficient embryos, the YO-PRO-1 signal in inner ear and lateral line neuromast hair cells were completely lost. Startle response experiment showed that compared with wide-type, the response to sound stimulation decreased significantly in cdh23 mutant larvae. Comparative transcriptomic showed that the candidate genes such as atp1b2b and myof could affect hearing by regulating ATP production and purine metabolism in a synergetic way with cdh23. RT-qPCR results further confirmed the transcriptomics results. Further compensatory experiment showed that ATP treated cdh23-/- embryos can partially recover the mutant phenotype. Conclusion In conclusion, our study may shed light on deciphering the principal mechanism and provide a potential therapeutic method for congenital hearing loss under the condition of CDH23 mutation.
Collapse
Affiliation(s)
- Shu Yang
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bing-Lin Xie
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Xiao-ping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Ling-xiang Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Gang-hua Zhu
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Wang
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei-jing Wu
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ruo-sha Lai
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Tao
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min-xin Guan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Fang-yi Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dong-hui Tan
- Department of Otolaryngology—Head and Neck Surgery, The Affiliated Hospital of Xiang Nan College, Chenzhou, China
| | - Zhong Deng
- Department of Otolaryngology—Head and Neck Surgery, The Affiliated Hospital of Xiang Nan College, Chenzhou, China
| | - Hua-ping Xie
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Yong Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Zi-an Xiao
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ding-hua Xie
- Department of Otorhinolaryngology—Head & Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Fan B, Lu F, Du WJ, Chen J, An XG, Wang RF, Li W, Song YL, Zha DJ, Chen FQ. PTEN inhibitor bisperoxovanadium protects against noise-induced hearing loss. Neural Regen Res 2023; 18:1601-1606. [PMID: 36571368 PMCID: PMC10075117 DOI: 10.4103/1673-5374.358606] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies have shown that phosphatase and tensin homolog deleted on chromosome ten (PTEN) participates in the regulation of cochlear hair cell survival. Bisperoxovanadium protects against neurodegeneration by inhibiting PTEN expression. However, whether bisperoxovanadium can protect against noise-induced hearing loss and the underlying mechanism remains unclear. In this study, we established a mouse model of noise-induced hearing loss by exposure to 105 dB sound for 2 hours. We found that PTEN expression was increased in the organ of Corti, including outer hair cells, inner hair cells, and lateral wall tissues. Intraperitoneal administration of bisperoxovanadium decreased the auditory threshold and the loss of cochlear hair cells and inner hair cell ribbons. In addition, noise exposure decreased p-PI3K and p-Akt levels. Bisperoxovanadium preconditioning or PTEN knockdown upregulated the activity of PI3K-Akt. Bisperoxovanadium also prevented H2O2-induced hair cell death by reducing mitochondrial reactive oxygen species generation in cochlear explants. These findings suggest that bisperoxovanadium reduces noise-induced hearing injury and reduces cochlear hair cell loss.
Collapse
Affiliation(s)
- Bei Fan
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Fei Lu
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wei-Jia Du
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jun Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao-Gang An
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ren-Feng Wang
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wei Li
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yong-Li Song
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ding-Jun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Fu-Quan Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
4
|
Sun F, Zhang J, Chen L, Yuan Y, Guo X, Dong L, Sun J. Epac1 Signaling Pathway Mediates the Damage and Apoptosis of Inner Ear Hair Cells after Noise Exposure in a Rat Model. Neuroscience 2021; 465:116-127. [PMID: 33838290 DOI: 10.1016/j.neuroscience.2021.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
To investigate the role of the exchange protein directly activated by cAMP (Epac) signaling pathway in inner ear hair cell damage and apoptosis after noise exposure, we analyzed the expression level of Epac1 in a rat model of noise-induced hearing loss (NIHL), based on rat exposure to a 4-kHz and 106-dB sound pressure level (SPL) for 8 h. Loss of outer hair cells (OHCs), mitochondrial lesions, and hearing loss were examined after treatment with the Epac agonist, 8-CPT, or the Epac inhibitor, ESI-09. The effects of 8-CPT and ESI-09 on cell proliferation and apoptosis were examined by CCK-8 assays, holographic microscopy imaging, and Annexin-V FITC/PI staining in HEI-OC1 cells. The effects of 8-CPT and ESI-09 on Ca2+ entry were evaluated by confocal Ca2+ fluorescence measurement. We found that the expression level of Epac1 was significantly increased in the cochlear tissue after noise exposure. In NIHL rats, 8-CPT increased the loss of OHCs, mitochondrial lesions, and hearing loss compared to control rats, while ESI-09 produced the opposite effects. Oligomycin was used to induce HEI-OC1 cell damage in vitro. In HEI-OC1 cells treated with oligomycin, 8-CPT and ESI-09 increased and reduced cell apoptosis, respectively. Moreover, 8-CPT promoted Ca2+ uptake in HEI-OC1 cells, while ESI-09 inhibited this process. In conclusion, our data provide strong evidence that the Epac1 signaling pathway mediates early pathological damage in NIHL, and that Epac1 inhibition protects from NIHL, identifying Epac1 as a new potential therapeutic target for NIHL.
Collapse
Affiliation(s)
- Fanfan Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China; Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China
| | - Junge Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Li Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Yuhao Yuan
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaotao Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China
| | - Liuyi Dong
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Hefei 230001, China.
| |
Collapse
|