1
|
Sámano C, Mazzone GL. The role of astrocytes response triggered by hyperglycaemia during spinal cord injury. Arch Physiol Biochem 2024; 130:724-741. [PMID: 37798949 DOI: 10.1080/13813455.2023.2264538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia. METHODS The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed. RESULTS AND CONCLUSIONS This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Ciudad de México, México
| | - G L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
2
|
Li E, Yan R, Qiao H, Sun J, Zou P, Chang J, Li S, Ma Q, Zhang R, Liao B. Combined transcriptomics and proteomics studies on the effect of electrical stimulation on spinal cord injury in rats. Heliyon 2024; 10:e23960. [PMID: 38226269 PMCID: PMC10788535 DOI: 10.1016/j.heliyon.2023.e23960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Electrical stimulation (ES) of the spinal cord is a promising therapy for functional rehabilitation after spinal cord injury (SCI). However, the specific mechanism of action is poorly understood. We designed and applied an implanted ES device in the SCI area in rats and determined the effect of ES on the treatment of motor dysfunction after SCI using behavioral scores. Additionally, we examined the molecular characteristics of the samples using proteomic and transcriptomic sequencing. The differential molecules between groups were identified using statistical analyses. Molecular, network, and pathway-based analyses were used to identify group-specific biological features. ES (0.5 mA, 0.1 ms, 50 Hz) had a positive effect on motor dysfunction and neuronal regeneration in rats after SCI. Six samples (three independent replicates in each group) were used for transcriptome sequencing; we obtained 1026 differential genes, comprising 274 upregulated genes and 752 downregulated genes. A total of 10 samples were obtained: four samples in the ES group and six samples in the SCI group; for the proteome sequencing, 48 differential proteins were identified, including 45 up-regulated and three down-regulated proteins. Combined transcriptomic and proteomic studies have shown that the main enrichment pathway is the hedgehog signaling pathway. Western blot results showed that the expression levels of Sonic hedgehog (SHH) (P < 0.001), Smoothened (SMO) (P = 0.0338), and GLI-1 (P < 0.01) proteins in the ES treatment group were significantly higher than those in the SCI group. The immunofluorescence results showed significantly increased expression of SHH (P = 0.0181), SMO (P = 0.021), and GLI-1 (P = 0.0126) in the ES group compared with that in the SCI group. In conclusion, ES after SCI had a positive effect on motor dysfunction and anti-inflammatory effects in rats. Moreover, transcriptomic and proteomic sequencing also provided unique perspectives on the complex relationships between ES on SCI, where the SHH signaling pathway plays a critical role. Our study provides a significant theoretical foundation for the clinical implementation of ES therapy in patients with SCI.
Collapse
Affiliation(s)
- Erliang Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rongbao Yan
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huanhuan Qiao
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Jin Sun
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Peng Zou
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiaqi Chang
- School of Automation Science and Electrical Engineering, Beihang University, 37th Xueyuan Road, Beijing, China
| | - Shuang Li
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Rui Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Liao
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Muñoz-Ballester C, Robel S. Astrocyte-mediated mechanisms contribute to traumatic brain injury pathology. WIREs Mech Dis 2023; 15:e1622. [PMID: 37332001 PMCID: PMC10526985 DOI: 10.1002/wsbm.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
Astrocytes respond to traumatic brain injury (TBI) with changes to their molecular make-up and cell biology, which results in changes in astrocyte function. These changes can be adaptive, initiating repair processes in the brain, or detrimental, causing secondary damage including neuronal death or abnormal neuronal activity. The response of astrocytes to TBI is often-but not always-accompanied by the upregulation of intermediate filaments, including glial fibrillary acidic protein (GFAP) and vimentin. Because GFAP is often upregulated in the context of nervous system disturbance, reactive astrogliosis is sometimes treated as an "all-or-none" process. However, the extent of astrocytes' cellular, molecular, and physiological adjustments is not equal for each TBI type or even for each astrocyte within the same injured brain. Additionally, new research highlights that different neurological injuries and diseases result in entirely distinctive and sometimes divergent astrocyte changes. Thus, extrapolating findings on astrocyte biology from one pathological context to another is problematic. We summarize the current knowledge about astrocyte responses specific to TBI and point out open questions that the field should tackle to better understand how astrocytes shape TBI outcomes. We address the astrocyte response to focal versus diffuse TBI and heterogeneity of reactive astrocytes within the same brain, the role of intermediate filament upregulation, functional changes to astrocyte function including potassium and glutamate homeostasis, blood-brain barrier maintenance and repair, metabolism, and reactive oxygen species detoxification, sex differences, and factors influencing astrocyte proliferation after TBI. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Carmen Muñoz-Ballester
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stefanie Robel
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Gu J, Gao B, Zafar H, Chu B, Feng X, Ni Y, Xu L, Bao R. Thermo-sensitive hydrogel combined with SHH expressed RMSCs for rat spinal cord regeneration. Front Bioeng Biotechnol 2022; 10:1001396. [PMID: 36338109 PMCID: PMC9634076 DOI: 10.3389/fbioe.2022.1001396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose: Spinal cord injury (SCI) has a damaging impact on patients, amid being a worldwide problem with no effective treatment. Herein, we reported a method for functional therapy of SCI in rats, wherein we combined thermo-sensitive hydrogel with Sonic Hedgehog (SHH) expressed in rat bone-marrow derived mesenchymal stem cells (RMSCs). Methods: Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from Sprague-Dawley (SD) female rats. The SHH was optimized and transferred into RMSCs via cationic liposomes, while thermo-sensitive hydrogel was reformed with hyaluronate (HA) and Pluronic F127. Then, a rat model with SCI was established accordingly by male SD rats and randomized into sham, model, RMSCs with hydrogel and SHH-RMSCs with hydrogel. The evaluation of SCI repair based on Basso, Beattie Bresnahanlocomotor rating scale (BBB scale) and inclined plate score. Immunofluorescence, immunohistochemistry and hematoxylin-eosin were utilized to explore the expression of protein (GFAP, GAP43, NF200 and MBP) and histopathology. Results: It was demonstrated that transfection of SHH with cationic liposomes exhibited more effect in RMSCs than lipofectamine 2000. As shown in SEM, 3.5% HA-F127 demonstrated porous structure. In the MTT and dead/live assay, 3.5% HA-F127 showed good biocompatibility for RMSCs. Both RMSCs and SHH-RMSCs groups could significantly promote BBB and inclined plate scores (p < 0.01) compared with the model. Furthermore, the SHH-RMSC group was significantly improved than RMSC with the expression of related proteins, where NF200, MBP, and GAP43 were principally enhanced with the GFAP expression being virtually down-regulated. Conclusion: All in all, the results suggested that transplantation of RMSCs with SHH could improve the function of SCI and promote nerve regeneration.
Collapse
Affiliation(s)
- Jun Gu
- School of Medicine, Yangzhou University, Yangzhou, China
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, China
- *Correspondence: Jun Gu, ; Hajra Zafar,
| | - Biao Gao
- School of Medicine, Yangzhou University, Yangzhou, China
- Wuxi Xishan District Ehu Town Health Center, Wuxi, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jun Gu, ; Hajra Zafar,
| | - Bo Chu
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, China
| | - Xiaojun Feng
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, China
| | - Yinjie Ni
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, China
| | - Lin Xu
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, China
| | - Rui Bao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Effect of monosultap on notochord development in zebrafish (Danio rerio) embryos. Toxicology 2022; 477:153276. [PMID: 35933024 DOI: 10.1016/j.tox.2022.153276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022]
Abstract
Monosultap (Mon) is a broad-spectrum insecticide used in agricultural production to control stem borers in rice fields. Currently, little evidence shows how Mon affects notochord development in zebrafish (Danio rerio). In our study, zebrafish embryos were exposed to 0.25, 0.5, and 0.75 mg/L Mon to determine the effects of different concentrations of Mon on notochord development. Mon exposure reduced the body length, decreased the heart rate and hatchability, and induced notochord deformity in zebrafish. The effects of Mon exposure on the internal organization of the notochord and the structural abnormalities were determined based on histological staining of paraffinized tissue sections. Quantitative polymerase chain reaction (qPCR) and in situ hybridization findings revealed that the expression levels of genes related to notochord development (shha, col2a, and ptch2) showed an increasing trend in a concentration-dependent manner. An abnormal increase of apoptosis and cell proliferation in some parts of the notochord suggested that Mon exposure could cause developmental abnormality of the notochord. This study revealed the toxicity of Mon in notochord development. Our findings provide information in assessing the risk of Mon to the ecological environment and human health.
Collapse
|
6
|
Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NEUROSCI 2022; 3:1-27. [PMID: 39484675 PMCID: PMC11523733 DOI: 10.3390/neurosci3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2024] Open
Abstract
The blood-spinal cord barrier (BSCB) has been long thought of as a functional equivalent to the blood-brain barrier (BBB), restricting blood flow into the spinal cord. The spinal cord is supported by various disc tissues that provide agility and has different local immune responses compared to the brain. Though physiologically, structural components of the BSCB and BBB share many similarities, the clinical landscape significantly differs. Thus, it is crucial to understand the composition of BSCB and also to establish the cause-effect relationship with aberrations and spinal cord dysfunctions. Here, we provide a descriptive analysis of the anatomy, current techniques to assess the impairment of BSCB, associated risk factors and impact of spinal disorders such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), peripheral nerve injury (PNI), ischemia reperfusion injury (IRI), degenerative cervical myelopathy (DCM), multiple sclerosis (MS), spinal cavernous malformations (SCM) and cancer on BSCB dysfunction. Along with diagnostic and mechanistic analyses, we also provide an up-to-date account of available therapeutic options for BSCB repair. We emphasize the need to address BSCB as an individual entity and direct future research towards it.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Spiro Menounos
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
| | - Jaesung P Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
7
|
Yu G, Zhang Y, Ning B. Reactive Astrocytes in Central Nervous System Injury: Subgroup and Potential Therapy. Front Cell Neurosci 2022; 15:792764. [PMID: 35002629 PMCID: PMC8733560 DOI: 10.3389/fncel.2021.792764] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic central nervous system (CNS) injury, which includes both traumatic brain injury (TBI) and spinal cord injury (SCI), is associated with irreversible loss of neurological function and high medical care costs. Currently, no effective treatment exists to improve the prognosis of patients. Astrocytes comprise the largest population of glial cells in the CNS and, with the advancements in the field of neurology, are increasingly recognized as having key functions in both the brain and the spinal cord. When stimulated by disease or injury, astrocytes become activated and undergo a series of changes, including alterations in gene expression, hypertrophy, the loss of inherent functions, and the acquisition of new ones. Studies have shown that astrocytes are highly heterogeneous with respect to their gene expression profiles, and this heterogeneity accounts for their observed context-dependent phenotypic diversity. In the inured CNS, activated astrocytes play a dual role both as regulators of neuroinflammation and in scar formation. Identifying the subpopulations of reactive astrocytes that exert beneficial or harmful effects will aid in deciphering the pathological mechanisms underlying CNS injuries and ultimately provide a theoretical basis for the development of effective strategies for the treatment of associated conditions. Following CNS injury, as the disease progresses, astrocyte phenotypes undergo continuous changes. Although current research methods do not allow a comprehensive and accurate classification of astrocyte subpopulations in complex pathological contexts, they can nonetheless aid in understanding the roles of astrocytes in disease. In this review, after a brief introduction to the pathology of CNS injury, we summarize current knowledge regarding astrocyte activation following CNS injury, including: (a) the regulatory factors involved in this process; (b) the functions of different astrocyte subgroups based on the existing classification of astrocytes; and (c) attempts at astrocyte-targeted therapy.
Collapse
Affiliation(s)
- GuiLian Yu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhang
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Ning
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|