1
|
Jiang N, Wang J, Wang Q, Baihetiyaer B, Li X, Yang Z, Li M, Sun H, Yin X. Evaluation of the biological response of propofol in zebrafish (Danio rerio): Focusing on biochemical, transcriptional, and molecular level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120764. [PMID: 36455772 DOI: 10.1016/j.envpol.2022.120764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Propofol, one of the most widely used intravenous anesthetic in clinical practice, has been reported to impair cognitive and memory function. However, the toxicological effects of propofol on aquatic organisms are still poorly understood. This study explored the toxic effects of chronic propofol exposure (0.008, 0.04, and 0.2 mg L-1) on adult zebrafish from biochemical, transcriptional, and molecular level after 7, 14, 21 and 28 days of exposure. Results indicated that the reactive oxygen species (ROS) levels were significantly upregulated during the 28 days exposure period, and excessive ROS caused lipid peroxidation, resulting in increased malondialdehyde (MDA) contents in the zebrafish brain. In order to relieve the oxidative damage induced by the excessive ROS, the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT)) were significantly activated, and detoxification enzyme (glutathione S-transferase, GST) activities showed an "activation-inhibition" trend. However, the antioxidant enzymes and detoxification enzyme system could not eliminate the excessive ROS in time and thus caused DNA damage in zebrafish brain. The olive tail moment (OTM) values displayed a "dose-response" relationship with propofol concentrations. Meanwhile, the transcription of related genes of Nrf2-Keap1 pathway was activated. Further molecular simulation experiments suggested that propofol could directly combine with SOD/CAT to change the activity of its biological enzyme. These findings indicated that zebrafish could regulate antioxidant capacity to combat oxidative stress at the early exposure stage, but the activity of antioxidant enzymes were significantly inhibited with the increase of propofol exposure time. Our results are of great importance for understanding toxicological effects of propofol on aquatic organisms.
Collapse
Affiliation(s)
- Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China; College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Baikerouzi Baihetiyaer
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Zhongkang Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Mingsheng Li
- Department of Anesthesiology, Tai'an City Central Hospital, Tai'an, 271000, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China.
| |
Collapse
|
2
|
Xu L, Liu MZ, Yang YY, Wang Y, Hua XX, Du LX, Zhu JY, Shen Y, Wang YQ, Zhang L, Mi WL, Mu D. Geraniol enhances inhibitory inputs to the paraventricular thalamic nucleus and induces sedation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153965. [PMID: 35144136 DOI: 10.1016/j.phymed.2022.153965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/31/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant extracts with sedative effects have a long history of clinical use for treating insomnia and epilepsy. Geraniol (GE), a plant-derived acyclic monoterpene, reduces locomotion and prolongs barbiturate-induced anesthesia in rats. However, the mechanisms of GE in sedation remain elusive. PURPOSE This study aimed to investigate the mechanisms of GE in sedation in mice. METHODS GE was administered systemically by nebulization and intraperitoneal injection. Open field tests, acute seizure tests, and electroencephalogram (EEG) recordings were performed to examine the sedative effects of GE in mice. The time of loss of the righting reflex and return of the righting reflex were recorded in anesthesia experiments to examine the effect of GE on anesthesia. In vitro c-Fos staining and in vivo fiber photometry recordings were performed to detect the activity change of the paraventricular thalamic nucleus (PVT). Microinjection of GE into PVT and related behavioral tests were performed to confirm that PVT was a critical target for GE. Whole-cell recordings were performed to dissect the effects of GE on PVT neurons via GABAA receptors. Molecular docking was performed to examine the interaction between GE and GABAA receptor subunits. RESULTS We found that GE reduced locomotion, relieved acute seizures, altered the EEG, and facilitated general anesthesia in mice. Next, we found that GE decreased c-Fos expression and suppressed the calcium activity in PVT. Microinjection of GE into PVT reduced locomotion and facilitated anesthesia. Furthermore, electrophysiology results showed that GE induced dramatic membrane hyperpolarization and suppressed the activity of PVT neurons, mainly by prolonging spontaneous inhibitory postsynaptic currents and inducing tonic inhibitory currents. Molecular docking results indicated that the β3 subunit might be a potential target for GE. CONCLUSION By combined using behavioral tests, immunohistochemistry, calcium recording, and electrophysiology, we systematically revealed that GE inhibits PVT and induces sedation in mice. Essential oils have long been considered part of traditional medicine, and they are playing a critical role in aromatherapy. Since GE has a comparatively ideal safety property and multiple delivery methods, GE has great application potential in aromatherapy. Our study also provides a potential candidate for further development of sedatives and anaesthetics.
Collapse
Affiliation(s)
- Ling Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ming-Zhe Liu
- Department of Respiratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Ya-Yue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Institutes of Brain Science, Medical College, Fudan University, Shanghai 200032, China
| | - Yan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xiao-Xiao Hua
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China
| | - Li-Xia Du
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Institutes of Brain Science, Medical College, Fudan University, Shanghai 200032, China
| | - Jian-Yu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Institutes of Brain Science, Medical College, Fudan University, Shanghai 200032, China
| | - Yang Shen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Institutes of Brain Science, Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China
| | - Ling Zhang
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Institutes of Brain Science, Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China.
| | - Di Mu
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|