1
|
Wang H, Chen Y, Zhang J, Wang N, Tian T. Deletion of BRCC3 ameliorates airway inflammation in asthma by inhibiting the activation of NLRP3 inflammasome. Int Immunopharmacol 2025; 145:113720. [PMID: 39642564 DOI: 10.1016/j.intimp.2024.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
BRCA1/BRCA2-containing complex subunit 3 (BRCC3) serves as a deubiquitinating enzyme contributing to multiple inflammation-related disorders. However, the role of BRCC3 in modulating airway inflammation in asthma has not been investigated. This study aimed to examine the role of BRCC3 in airway inflammation using a mouse model of asthma induced by ovalbumin (OVA). BRCC3 levels were found to be elevated in mice with asthma. BRCC3 knockout (KO) mice demonstrated a notable improvement in pathological changes, accompanied by reduced levels of inflammatory cell infiltration and inflammatory cytokines, compared to wild-type (WT) mice following OVA challenge. The NLRP3 inflammasome was high activated in asthmatic mice, which was restrained by BRCC3 KO, as companied by a decrease in NLRP3, ASC, cleaved Caspase-1, cleaved Gasdermin D (GSDMD), IL-1β, and IL-18. In vitro studies demonstrated BRCC3 levels increased in airway epithelial cells in response to house dust mite (HDM) stimulation, depending on the dose and duration of exposure. Silencing BRCC3 in airway epithelial cells protected against HDM-induced cell injury and inflammation, along with inhibiting the NLRP3 inflammasome and pyroptosis. Conversely, the overexpression of BRCC3 in airway epithelial cells worsened DM-induced cell injury and inflammation while also enhancing the NLRP3 inflammasome and pyroptosis. Further investigations revealed that silencing BRCC3 increased the ubiquitination of NLRP3, whereas overexpressing BRCC3 decreased it. Pharmacological inhibition of the NLRP3 inflammasome diminished the effects of BRCC3 overexpression on the inflammation and pyroptosis induced by HDM in airway epithelial cells. Overall, these findings underscore the importance of BRCC3 in the pathogenesis of asthma. Deletion of BRCC3 alleviates airway inflammation in asthma by impeding the activation of the NLRP3 inflammasome, thus indicating that BRCC3 could serve as a potential target for asthma therapy.
Collapse
Affiliation(s)
- Hao Wang
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China
| | - Yao Chen
- Department of Pediatrics, Xi'an Zhongda International Hospital, Xi'an, Shaanxi Province 710000, China
| | - Jin Zhang
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China
| | - Ning Wang
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China
| | - Tian Tian
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China.
| |
Collapse
|
2
|
Mo S, Yang C, Zheng X, Lv H, Mao S, Liu N, Yang Q, Liao B, Yang M, Lu Z, Tang L, Huang X, Jian C, Li X, Shang J. Neuroprotective Effects of AER-271 in a tMCAO Mouse Model: Modulation of Autophagy, Apoptosis, and Inflammation. Inflammation 2024:10.1007/s10753-024-02082-7. [PMID: 39117789 DOI: 10.1007/s10753-024-02082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024]
Abstract
Following ischemic stroke, aquaporin 4 (AQP4) expression modifications have been associated with increased inflammation. However, the underlying mechanisms are not fully understood. This study aims to elucidate the mechanistic basis of post-cerebral ischemia-reperfusion (I/R) inflammation by employing the AQP4-specific inhibitor, AER-271. The middle cerebral artery occlusion (MCAO) model was used to induce ischemic stroke in mice. C57BL/6 mice were randomly allocated into four groups: sham operation, I/R, AER-271, and 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020) treatment, with observations recorded at 1 day, 3 days, and 7 days post-tMCAO. Each group consisted of 15 mice. Procedures included histological examination through HE staining, neurological scoring, Western blot analysis, and immunofluorescence staining. AER-271 treatment yielded significant improvements in post-stroke weight recovery and neurological scores, accompanied by a reduction in cerebral infarction volume. Moreover, AER-271 exhibited a noticeable influence on autophagic and apoptotic pathways, affecting the activation of both pro-inflammatory and anti-inflammatory cytokines. Alterations in the levels of inflammatory biomarkers MCP-1, NLRP3, and caspase 1 were also detected. Finally, a comparative assessment of the effects of AER-271 and TGN-020 in mitigating apoptosis and microglial polarization in ischemic mice revealed neuroprotective effects with no significant difference in efficacy. This study provides essential insights into the neuroprotective mechanisms of AER-271 in cerebral ischemia-reperfusion injury, offering potential clinical applications in the treatment of ischemic cerebrovascular disorders.
Collapse
Affiliation(s)
- Shenglong Mo
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Biological Molecule Laboratory, Guangxi University Key Laboratory of High Incidence Prevention and Control Research in Western Guangxi, Baise, 53300, Guangxi, China
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Chengmin Yang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Biological Molecule Laboratory, Guangxi University Key Laboratory of High Incidence Prevention and Control Research in Western Guangxi, Baise, 53300, Guangxi, China
| | - Xingwu Zheng
- Department of Geriatrics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Hui Lv
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Sanyin Mao
- Department of Neurology, The First People's Hospital of Jiande, Hangzhou, China
| | - Ning Liu
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Qin Yang
- Department of Neurology, BAISE PEOPLE'S HOSPITAL, Baise, Guangxi, China
| | - Bao Liao
- Department of Neurology, BAISE PEOPLE'S HOSPITAL, Baise, Guangxi, China
| | - Meiling Yang
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Zhicheng Lu
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Lina Tang
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Xiaorui Huang
- Department of Psychiatry and Psychology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chongdong Jian
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Biological Molecule Laboratory, Guangxi University Key Laboratory of High Incidence Prevention and Control Research in Western Guangxi, Baise, 53300, Guangxi, China.
| | - Xuebin Li
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Biological Molecule Laboratory, Guangxi University Key Laboratory of High Incidence Prevention and Control Research in Western Guangxi, Baise, 53300, Guangxi, China.
| | - Jingwei Shang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Biological Molecule Laboratory, Guangxi University Key Laboratory of High Incidence Prevention and Control Research in Western Guangxi, Baise, 53300, Guangxi, China.
| |
Collapse
|
3
|
Huang X, Tan J, Ji Y, Luo J, Zhao Y, Zhao J. BRCC3 mediates inflammation and pyroptosis in cerebral ischemia/reperfusion injury by activating the NLRP6 inflammasome. CNS Neurosci Ther 2024; 30:e14697. [PMID: 38544474 PMCID: PMC10973773 DOI: 10.1111/cns.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/04/2024] Open
Abstract
AIMS Neuroinflammation and pyroptosis are key mediators of cerebral ischemia/reperfusion (I/R) injury-induced pathogenic cascades. BRCC3, the human homolog of BRCC36, is implicated in neurological disorders and plays a crucial role in neuroinflammation and pyroptosis. However, its effects and potential mechanisms in cerebral I/R injury in mice are unclear. METHODS Cellular localization of BRCC3 and the interaction between BRCC3 and NLRP6 were assessed. Middle cerebral artery occlusion/reperfusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were established in mice and HT22 cells, respectively, to simulate cerebral I/R injury in vivo and in vitro. RESULTS BRCC3 protein expression peaked 24 h after MCAO and OGD/R. BRCC3 knockdown reduced the inflammation and pyroptosis caused by cerebral I/R injury and ameliorated neurological deficits in mice after MCAO. The effects of BRCC3 on inflammation and pyroptosis may be mediated by NLRP6 inflammasome activation. Moreover, both BRCC3 and its N- and C-terminals interacted with NLRP6, and both BRCC3 and its terminals reduced NLRP6 ubiquitination. Additionally, BRCC3 affected the interaction between NLRP6 and ASC, which may be related to inflammasome activation. CONCLUSION BRCC3 shows promise as a novel target to enhance neurological recovery and attenuate the inflammatory responses and pyroptosis caused by NLRP6 activation in cerebral I/R injury.
Collapse
Affiliation(s)
- Xiaohuan Huang
- Department of PathologyChongqing Medical UniversityChongqingChina
- Department of PathologyChongqing Three Gorges Medical CollegeWanzhouChina
| | - Junyi Tan
- Department of PathophysiologyChongqing Medical UniversityChongqingChina
| | - Yanyan Ji
- Department of PathologyChongqing Medical UniversityChongqingChina
| | - Jing Luo
- Department of PathologyChongqing Medical UniversityChongqingChina
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yong Zhao
- Department of PathologyChongqing Medical UniversityChongqingChina
| | - Jing Zhao
- Department of PathophysiologyChongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
Guo Y, Song J, Yan M, Chen Y, Huang L, Liu J, He Y, Lü Y, Yu W. The role of NLRP6 in the development and progression of neurological diseases. Mol Biol Rep 2024; 51:351. [PMID: 38400865 DOI: 10.1007/s11033-024-09293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
The nervous system possesses the remarkable ability to undergo changes in order to store information; however, it is also susceptible to damage caused by invading pathogens or neurodegenerative processes. As a member of nucleotide-binding oligomerization domain-like receptor (NLR) family, the NLRP6 inflammasome serves as a cytoplasmic innate immune sensor responsible for detecting microbe-associated molecular patterns. Upon activation, NLRP6 can recruit the adapter protein apoptosis-associated speck-like protein (ASC) and the inflammatory factors caspase-1 or caspase-11. Consequently, inflammasomes are formed, facilitating the maturation and secretion of pro-inflammatory cytokines such as inflammatory factors-18 (IL-18) and inflammatory factors-1β (IL-1β). Precise regulation of NLRP6 is crucial for maintaining tissue homeostasis, as dysregulated inflammasome activation can contribute to the development of various diseases. Furthermore, NLRP6 may also play a role in the regulation of extraintestinal diseases. In cells of the brain, such as astrocytes and neurons, NLRP6 inflammasome are also present. Here, the assembly and subsequent activation of caspase-1 mediated by NLRP6 contribute to disease progression. This review aims to discuss the structure and function of NLRP6, explain clearly the mechanisms that induce and activate NLRP6, and explore its role within the central and peripheral nervous system.
Collapse
Affiliation(s)
- Yiming Guo
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaqi Song
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Mengyu Yan
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yingxi Chen
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Lihong Huang
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jiarui Liu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yurou He
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weihua Yu
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
5
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
6
|
Angosto-Bazarra D, Molina-López C, Pelegrín P. Physiological and pathophysiological functions of NLRP6: pro- and anti-inflammatory roles. Commun Biol 2022; 5:524. [PMID: 35650327 PMCID: PMC9160023 DOI: 10.1038/s42003-022-03491-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/12/2022] [Indexed: 12/26/2022] Open
Abstract
The nucleotide-binding oligomerization and leucine-rich repeat receptor (NLR) protein family consists of important immune sensors that form inflammasomes, a cytosolic multi-protein platform that induces caspase-1 activation and is involved in different inflammatory pathologies. The NLR family pyrin domain containing 6 (NLRP6) is a receptor that can signal by forming inflammasomes, but which can also play an important role without forming inflammasomes. NLRP6 regulates intestinal homeostasis and inflammation, but also is involved in cancer, the nervous system or liver diseases, with both protective and deleterious consequences. In the present article, we review the different roles of NLRP6 in these processes and offer new insights into NLRP6 activation. This review discusses emerging roles for the NLR family pyrin domain containing 6 receptor (NLRP6) in intestinal homeostasis, inflammation, cancer, the nervous system and liver disease.
Collapse
Affiliation(s)
- Diego Angosto-Bazarra
- Línea de Inflamación Molecular, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain.
| | - Cristina Molina-López
- Línea de Inflamación Molecular, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pablo Pelegrín
- Línea de Inflamación Molecular, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain. .,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120, Murcia, Spain.
| |
Collapse
|