1
|
Zhou W, Lyu SB, Li H, Li SX, Yao WH, Shan SL, Tang H, Zhang J, Sun CH, Wen CL, Yang F, Guo J, Xu LJ, Yan Y, Yan ZQ, He QL, Cheng D. Toxic effects and safety assessment of Xanthoceras sorbifolium bunge seed kernels. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119242. [PMID: 39694427 DOI: 10.1016/j.jep.2024.119242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xanthoceras sorbifolium Bunge (X. sorbifolia), an oil crop native to northern China, is valued for both its edible and medicinal uses. It has various applications, including the production of edible and bioactive oils, and is used in traditional medicine for its antioxidant and anti-inflammatory properties. However, the toxicity of X. sorbifolia, particularly its widely used seed kernels, remains unclear. AIM OF THE STUDY This study aimed to evaluate the acute toxicity and safety risks of X. sorbifolia seed kernels based on human-recommended doses by in vitro or in vivo experiments, and integrating network analysis. MATERIALS AND METHODS In this study, rats and mice were employed as model organisms to investigate the acute toxicity of X. sorbifolia seed kernels. The experiments included the Salmonella typhimurium reverse mutation test, red blood cell micronucleus test, spermatocyte chromosome aberration test in mice, and a 90-day exposure study in rats to assess the potential toxicity and safety risks of the seed kernels. Based on this, combined with The Comparative Toxicogenomics Database (CTD), the biological functions of the main active ingredients of X. sorbifolia were further explored through integrated network analysis, and the anti-inflammatory effect of X. sorbifolia was explored through cotton ball granuloma inflammation experiment. RESULTS During the experimental period, animals in all treatment groups demonstrated normal growth and development. Although some detection indicators showed significant differences in different treatment groups, the results were still within a reasonable range. In addition, by screening the CTD, 120 target genes with potential interactions of the main active ingredients in the kernel of X. sorbifolia were obtained for analysis, and it was found that these genes were involved in important biological processes such as response to oxidative stress, response to reactive oxygen species, and regulation of inflammatory response. The cotton ball granuloma inflammation experiment in rats also suggested that X. sorbifolia tended to inhibit the proliferation of granulomas, indicating that the kernel of X. sorbifolia has potential anti-inflammatory and antioxidant properties. CONCLUSION The findings suggested that X. sorbifolia seed kernels were safe within the recommended dosage range. As a traditional Chinese medicine prescription, it has certain anti-inflammatory and antioxidant effects. This study provides valuable reference guidelines for the clinical application of X. sorbifolia seed kernels and encourages further research into its potential uses and safety.
Collapse
Affiliation(s)
- Wen Zhou
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Shi-Bo Lyu
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Hui Li
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Shu-Xian Li
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Wen-Huan Yao
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Shu-Lin Shan
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Hui Tang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Jing Zhang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Chang-Hua Sun
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Cheng-Li Wen
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Fei Yang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Jie Guo
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Long-Jin Xu
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Yan Yan
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China
| | - Zhi-Qiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
| | - Qi-Long He
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China.
| | - Dong Cheng
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, 250014, China; Shandong Provincial Key Medical And Health Discipline of Sanitary Analysis (Shandong Center For Disease Control And Prevention), Jinan, 250014, China.
| |
Collapse
|
2
|
Cui WJ, Li RH, Chen XL, Xia ZM, Liu SF, Li M, Chen L, Tian Y, Li B, Zhang GJ, Liu SC, Wang L. A review on triterpenoid and triterpenoid saponins from Xanthoceras sorbifolium Bung. Carbohydr Res 2024; 539:109120. [PMID: 38669825 DOI: 10.1016/j.carres.2024.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Xanthoceras sorbifolium Bunge, also known as Tu-Mu-Gua and Wen-Dan-Ge-Zi, has several applications. Clinical data and experimental studies have shown anti-tumor, anti-inflammatory, anti-bacterial, and anti-oxidant properties of Xanthoceras sorbifolium Bunge that inhibits prostate hyperplasia, lowers blood pressure and lipid level, and treats enuresis and urinary incontinence. It also has neuroprotective effects and can treat Alzheimer's disease and Parkinson's syndrome. The research on the chemical composition and pharmacological effects of Xanthoceras sorbifolium Bunge has been increasing. Triterpenoid and triterpenoid saponins are the main constituents in Xanthoceras sorbifolium Bunge and exhibit biological activities. In this review, we summarized the research progress on triterpenoids and their glycosides in Xanthoceras sorbifolia, including the chemical constituents, pharmacological activities, and biogenic pathways of triterpenoid mother nucleus. The results would provide a reference for further research and development of triterpenoids and their glycosides in Xanthoceras sorbifolia.
Collapse
Affiliation(s)
- Wen-Jin Cui
- Beijing University of Technology, BeiJing, 100124, China; Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Rui-Hong Li
- Beijing University of Technology, BeiJing, 100124, China; Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Xiao-Lan Chen
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Zi-Ming Xia
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Si-Fan Liu
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Min Li
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Li Chen
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Ying Tian
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Bin Li
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China
| | - Guang-Jie Zhang
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China.
| | - Shu-Chen Liu
- Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China.
| | - Lin Wang
- Beijing University of Technology, BeiJing, 100124, China; Beijing Institute of Radition Medicine, People's Republic of China Department of Pharmaceutical Chemistry, BeiJing, 100850, China.
| |
Collapse
|
3
|
Zheng YB, Sheng XM, Jin X, Guan W. MiR-182-5p: A Novel Biomarker in the Treatment of Depression in CSDS-Induced Mice. Int J Neuropsychopharmacol 2024; 27:pyad064. [PMID: 38038373 PMCID: PMC10799762 DOI: 10.1093/ijnp/pyad064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Depression is a neuropsychiatric disease with a high disability rate and mainly caused by the chronic stress or genetic factors. There is increasing evidence that microRNAs (miRNAs) play a critical role in the pathogenesis of depression. However, the underlying molecular mechanism for the pathophysiology of depression of miRNA remains entirely unclear so far. METHODS We first established a chronic social defeat stress (CSDS) mice model of depression, and depression-like behaviors of mice were evaluated by a series of behavioral tests. Next, we detected several abundantly expressive miRNAs suggested in previous reports to be involved in depression and found miR-182-5p was selected as a candidate for analysis in the hippocampus. Then western blotting and immunofluorescence were used together to examine whether adeno-associated virus (AAV)-siR-182-5p treatment alleviated chronic stress-induced decrease in hippocampal Akt/GSK3β/cAMP-response element binding protein (CREB) signaling pathway and increase in neurogenesis impairment and neuroinflammation. Furthermore, CREB inhibitor was adopted to examine if blockade of Akt/GSK3β/CREB signaling pathway abolished the antidepressant actions of AAV-siR-182-5p in mice. RESULTS Knockdown of miR-182-5p alleviated depression-like behaviors and impaired neurogenesis of CSDS-induced mice. Intriguingly, the usage of agomiR-182-5p produced significant increases in immobility times and aggravated neuronal neurogenesis damage of mice. More importantly, it suggested that 666-15 blocked the reversal effects of AAV-siR-182-5p on the CSDS-induced depressive-like behaviors in behavioral testing and neuronal neurogenesis within hippocampus of mice. CONCLUSIONS These findings indicated that hippocampal miR-182-5p/Akt/GSK3β/CREB signaling pathway participated in the pathogenesis of depression, and it might give more opportunities for new drug developments based on the miRNA target in the clinic.
Collapse
Affiliation(s)
- Ya-Bin Zheng
- Department of Neurology, The second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-Ming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiang Jin
- Department of Pharmacy, The Second People’s Hospital of Nantong, Nantong, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Guan W, Wu XY, Jin X, Sheng XM, Fan Y. miR-204-5p Plays a Critical Role in the Pathogenesis of Depression and Anti-depression Action of Venlafaxine in the Hippocampus of Mice. Curr Med Chem 2024; 31:3412-3425. [PMID: 37357509 DOI: 10.2174/0929867330666230623163315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Venlafaxine has been demonstrated to treat diseases such as social anxiety disorder and depression. Most of antidepressants including venlafaxine have a certain effect, but significant side effects. Therefore, it is necessary for us to research the development of novel antidepressants for effective treatment in practice. MicroRNA-204 (miR-204) is highly expressed in brain tissue, and plays a critical role in the synaptic plasticity of hippocampal neurons in rats. However, the underlying molecular mechanism of miR-204 remains unclear to date, this study aims to offer unique insights into depression and provide a theoretical basis for clinical physicians. METHODS A chronic social defeat stress (CSDS) was initially adopted for establishing a mice model of depression in this research and depression-like behaviors were evaluated by a series of behavioral experiments including the sucrose preference test (SPT), the tail suspension test (TST), the forced swim test (FST) and the social interaction test (SIT). Quantitative real-time reverse transcription PCR (qRT-PCR) was also conducted to test the expression levels of miR-204 and BDNF in the hippocampus of mice. Finally, gene interference of miR-204-5p was further adopted to test whether miR-204-5p played an effective role in the antidepressant effects of venlafaxine in mice. RESULTS Our data implicated that CSDS significantly increased the miR-204-5p but not miR-204-3p levels in the hippocampus of mice. The treatment of venlafaxine obviously relieved depression- like behaviors of CSDS-induced mice. The usage of venlafaxine abolished the increasing effects on the expression of miR-204-5p but up-regulated the BDNF expression level in CSDS-exposured mice. More importantly, we found that genetic overexpression of miR-204-5p decreased the reverse effects of venlafaxine on depressive-like behaviors and genetic knockdown of hippocampal miR-204-5p relieved the depressive-like behaviors and neurogenesis in CSDS-induced mice. CONCLUSION miR-204-5p played an effective role in the antidepressant effects of venlafaxine in CSDS-induced mice.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| | - Xin-Yuan Wu
- Department of Gynaecology and Obstetrics, Yancheng Maternal and Child Health Care Hospital, Yancheng 224000 Jiangsu, China
| | - Xiang Jin
- Department of Pharmacy, The Second People's Hospital of Nantong, Nantong 226002, Jiangsu, China
| | - Xiao-Ming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yan Fan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang 215600, Jiangsu, China
| |
Collapse
|
5
|
Lv S, Zhang G, Huang Y, Zhong X, Yi Y, Lu Y, Li J, Ma Y, Teng J. Adult hippocampal neurogenesis: pharmacological mechanisms of antidepressant active ingredients in traditional Chinese medicine. Front Pharmacol 2023; 14:1307746. [PMID: 38152691 PMCID: PMC10751940 DOI: 10.3389/fphar.2023.1307746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Depression is characterized by prominent indicators and manifestations, such as anhedonia, which refers to the inability to experience pleasure, and persistent feelings of hopelessness. In clinical practice, the primary treatment approach involves the utilization of selective serotonin reuptake inhibitors (SSRIs) and related pharmacological interventions. Nevertheless, it is crucial to recognize that these agents are associated with significant adverse effects. Traditional Chinese medicine (TCM) adopts a multifaceted approach, targeting diverse components, multiple targets, and various channels of action. TCM has potential antidepressant effects. Anomalies in adult hippocampal neurogenesis (AHN) constitute a pivotal factor in the pathology of depression, with the regulation of AHN emerging as a potential key measure to intervene in the pathogenesis and progression of this condition. This comprehensive review presented an overview of the pharmacological mechanisms underlying the antidepressant effects of active ingredients found in TCM. Through examination of recent studies, we explored how these ingredients modulated AHN. Furthermore, we critically assessed the current limitations of research in this domain and proposed novel strategies for preclinical investigation and clinical applications in the treatment of depression in future.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Gong M, Wang J, Song L, Wu X, Wang Y, Li B, Zhang Y, Qin L, Duan Y, Long B. Role of BDNF-TrkB signaling in the antidepressant-like actions of loganin, the main active compound of Corni Fructus. CNS Neurosci Ther 2023; 29:3842-3853. [PMID: 37408379 PMCID: PMC10651962 DOI: 10.1111/cns.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
AIMS Corni Fructus (CF) and some CF-contained prescriptions are commonly used in clinical treatment of depression. This investigation aims to evaluate the main active compound of CF in antidepressant properties and its key target. METHODS Firstly, this study established a behavioral despair model and used high-performance liquid chromatography method to evaluate the antidepressant-like effects of water extract, 20%, 50%, and 80% ethanol extracts of CF, and its main active compound. Then, this study created chronic unpredictable mild stress (CUMS) model to assess loganin's antidepressant-like properties, and its target was evaluated by quantitative real-time polymerase chain reaction, Western blot, Immunofluorescence, enzyme-linked immunosorbent assay, and tyrosine receptor kinase B (TrkB) inhibitor. RESULTS Results showed that the different extracts of CF significantly shortened the immobility time in forced swimming and tail suspension tests. Moreover, loganin alleviated CUMS-induced depression-like behavior, promoted neurotrophy and neurogenesis, and inhibited neuroinflammation. Furthermore, K252a blocked the improvement of loganin on depression-like behavior, and eliminated the enhancement of neurotrophy and neurogenesis and the inhibition of neuroinflammation. CONCLUSION Overall, these results indicated that loganin could be used as a major active compound of CF for the antidepressant-like properties and exerted antidepressant-like actions by regulating brain derived neurotrophic factor (BDNF)-TrkB signaling, and TrkB could be used as key target for itsantidepressant-like actions.
Collapse
Affiliation(s)
- Mingzhu Gong
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Junming Wang
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- Co‐Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. ChinaHenan University of Chinese MedicineZhengzhouChina
| | - Lingling Song
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Xiaohui Wu
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Yanmei Wang
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Bingyin Li
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Yueyue Zhang
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Lingyu Qin
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Yaqian Duan
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Bingyu Long
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
7
|
Fang S, Wu Z, Guo Y, Zhu W, Wan C, Yuan N, Chen J, Hao W, Mo X, Guo X, Fan L, Li X, Chen J. Roles of microglia in adult hippocampal neurogenesis in depression and their therapeutics. Front Immunol 2023; 14:1193053. [PMID: 37881439 PMCID: PMC10597707 DOI: 10.3389/fimmu.2023.1193053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Adult hippocampal neurogenesis generates functional neurons from neural progenitor cells in the hippocampal dentate gyrus (DG) to complement and repair neurons and neural circuits, thus benefiting the treatment of depression. Increasing evidence has shown that aberrant microglial activity can disrupt the appropriate formation and development of functional properties of neurogenesis, which will play a crucial role in the occurrence and development of depression. However, the mechanisms of the crosstalk between microglia and adult hippocampal neurogenesis in depression are not yet fully understood. Therefore, in this review, we first introduce recent discoveries regarding the roles of microglia and adult hippocampal neurogenesis in the etiology of depression. Then, we systematically discuss the possible mechanisms of how microglia regulate adult hippocampal neurogenesis in depression according to recent studies, which involve toll-like receptors, microglial polarization, fractalkine-C-X3-C motif chemokine receptor 1, hypothalamic-pituitary-adrenal axis, cytokines, brain-derived neurotrophic factor, and the microbiota-gut-brain axis, etc. In addition, we summarize the promising drugs that could improve the adult hippocampal neurogenesis by regulating the microglia. These findings will help us understand the complicated pathological mechanisms of depression and shed light on the development of new treatment strategies for this disease.
Collapse
Affiliation(s)
- Shaoyi Fang
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhibin Wu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yali Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wenjun Zhu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chunmiao Wan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Naijun Yuan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Shenzhen People’s Hospital, 2Clinical Medical College, Jinan University, Shenzhen, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenzhi Hao
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaowei Mo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lili Fan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Zhou C, Wu H, Sheng Q, Cao F, Zhu Z. Study on the Phenotypic Diversity of 33 Ornamental Xanthoceras sorbifolium Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2448. [PMID: 37447009 DOI: 10.3390/plants12132448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023]
Abstract
Xanthoceras sorbifolium, belonging to the family Sapindaceae, has a beautiful tree shape, elegant leaves, large and many brightly colored flowers, and a long flowering duration. This plant is widely applied in gardens. In this study, 33 cultivars of Xanthoceras sorbifolium were selected from the perspective of ornamental properties, and their phenotypic traits, such as leaves, flowers, and branches, were measured and analyzed, and their phenotypic diversity was comprehensively evaluated using principal component analysis, in order to investigate the phenotypic diversity characteristics of Xanthoceras sorbifolium. The results showed that the genetic diversity index of the qualitative traits varied from 0.14 to 1.50, and that of quantitative traits varied from 1.76 to 2.05. The quantitative traits were more diverse than the qualitative traits. The coefficient of variation of the qualitative traits ranged from 16.90% to 57.96%, and that of quantitative traits ranged from 12.92% to 32.87%. The phenotypic traits of the tested cultivars had relatively rich variation. Furthermore, the level of the phenotypic diversity index of Xanthoceras sorbifolium was not consistent with the level of coefficient of variation, indicating large variation and uneven distribution of variation. Through principal component analysis, 17 quantitative characters were extracted into five principal components, with a cumulative contribution rate of 79.82%, representing the primary information on the quantitative characters of ornamental Xanthoceras sorbifolium cultivars. The F value of the 33 samples ranged from -2.79 to 1.93, and the comprehensive scores of seven cultivars were greater than 1, indicating that these cultivars had rich phenotypic diversity. Therefore, the screening, development, and utilization of fine germplasm resources of Xanthoceras sorbifolium should focus on these cultivars. The 33 cultivars were subsequently clustered into five categories through systematic clustering. The cluster analysis provided references for breeding ornamental Xanthoceras sorbifolium cultivars with different utilization values, such as large white flowers, small red flowers, large red flowers, large orange flowers, and double-petaled flowers.
Collapse
Affiliation(s)
- Chengyu Zhou
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
| | - Huaiyan Wu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- College of Art and Design, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Shi LS, Ji CH, Liu Y, Gu JH, Tang WQ, Zhang W, Guan W. Ginsenoside Rh2 administration produces crucial antidepressant-like effects in a CUMS-induced mice model of depression. Brain Behav 2022; 12:e2705. [PMID: 35848938 PMCID: PMC9392527 DOI: 10.1002/brb3.2705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION The most striking feature of depression is sadness and a loss of interest in activities, which represents a major cause of disability globally. Therefore, it is necessary to identify novel antidepressants for clinical practice. Ginsenoside Rh2 (Rh2) is one of the major bioactive ginsenosides that can be extracted from Panax ginseng and has been demonstrated to improve both memory and learning. The purpose of this study was to provide broad insight into the mechanisms underlying depression and gain greater insights into antidepressant therapy. METHODS In this study, we first established an effective and feasible depression animal model of chronic unpredictable mild stress (CUMS) and behavioral testing was evaluated by the forced swim test (FST), the tail suspension test (TST) and the sucrose preference test. Following pretreatment with Rh2 (10 and 20 mg/kg), the immobility time of mice was reduced without affecting locomotor activity in both the FST and TST. Western blotting and immunofluorescence were used to investigate the activation of the hippocampal BDNF signaling pathway and hippocampal neurogenesis. RESULTS Different concentrations of Rh2 significantly reduced depressive-like symptoms in CUMS-induced mice and downregulated the effects of the BDNF signaling cascade and neurogenesis in the hippocampus. Furthermore, the administration of K252a completely prevented the antidepressant-like activity of Rh2 in mice. CONCLUSION The results indicated that Rh2 possesses the antidepression action via the positive regulation of the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Lin-Sheng Shi
- Department of Cardiology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Chun-Hui Ji
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Yue Liu
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Jiang-Hong Gu
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Wen-Qian Tang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Wei Zhang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China.,Provincial key laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
10
|
Wu ZH, Fan H, Gao SY, Jin YF, Cheng chen, Jiang B, Shen J. Antidepressant-like activity of oroxylin A in mice models of depression: A behavioral and neurobiological characterization. Front Pharmacol 2022; 13:921553. [PMID: 35959431 PMCID: PMC9360618 DOI: 10.3389/fphar.2022.921553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Depression is a mood disorder which causes a huge economic burden to both families and societies. However, those monoamine-based antidepressants used in clinical practice have been found to have various limitations. Therefore, currently it is very necessary to explore novel antidepressant targets and medications. As a main active component extracted from Scutellariae radix, oroxylin A possesses many pharmacological functions such as anti-cancer, anti-inflammation and neuroprotection. Here, the present study aims to investigate whether oroxylin A possess antidepressant-like actions using the chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS) models of depression, forced swim test, tail suspension test, open field test, sucrose preference test, western blotting, immunofluorescence and viral-mediated gene interference. Our results revealed that treatment of oroxylin A fully prevented both the CUMS-induced and CRS-induced depressive-like behaviors in mice. Moreover, the protecting effects of oroxylin A against CUMS and CRS on mice behaviors were accompanied with a significant enhancement on the levels of brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine kinase B (pTrkB), phosphorylated cAMP-response element binding protein (pCREB) and neurogenesis in the hippocampus. Furthermore, genetic knockdown of BDNF and TrkB in the hippocampus remarkably abolished the antidepressant-like efficacy of oroxylin A in both the CUMS and CRS models of depression, proving that the hippocampal BDNF-TrkB system participates in the antidepressant mechanism of oroxylin A. In summary, our findings are the first evidence showing that oroxylin A possesses potential of being an antidepressant candidate.
Collapse
|
11
|
Song Q, Huang W, Ye W, Yan H, Wang L, Yang Y, Cheng X, Zhang W, Zheng J, He P, He Y, Fang D, Han X. Neuroprotective Effects of Estrogen Through BDNF-Transient Receptor Potential Channels 6 Signaling Pathway in the Hippocampus in a Rat Model of Perimenopausal Depression. Front Aging Neurosci 2022; 14:869274. [PMID: 35875795 PMCID: PMC9305198 DOI: 10.3389/fnagi.2022.869274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
Estradiol (E2) has been proven to be effective in treating perimenopausal depression (PD); however, the downstream signaling pathways have not been fully elucidated. Transient receptor potential channels 6 (TRPC6) plays a vital role in promoting neuronal development and the formation of excitatory synapses. At present, we found that the serum levels of E2 and brain-derived neurotrophic factor (BDNF) declined significantly in the women with PD compared to perimenopausal women, which was accompanied by a clear reduction in TRPC6 levels. To further reveal the effects of TRPC6 on neuronal survival and excitability, the PD-like rat model was established by the total removal of left ovary and 80% removal of right ovary followed by 21 days of the chronic unpredictable mild stress. Intragastric administration of E2 (2 mg/kg), intraperitoneal injection of BDNF/TrB signaling pathway inhibitor (K252a, 100 μg/kg) and TRPC6 agonist (OAG, 0.6 mg/kg), and intracerebroventricular infusion of anti-BDNF antibody for blocking BDNF (0.5 μg/24 μl/rat) daily for 21 days were conducted. The levels of BDNF and TRPC6 in rat serum were lower in PD rats compared to the control rats; the depression-like behavior was induced, the neuronal death rate in the hippocampus increased, and the thickness of postsynaptic density (PSD) and the number of asymmetric synapses decreased significantly in the PD group. E2 treatment greatly upregulated the serum levels of BDNF and TRPC6, the neuronal excitability indicated by an elevation in the PSD thickness and the numbers of asymmetric synapses, and these actions were reversed by K252a; co-administration of TRPC6 agonist and K252a improved neuronal degeneration and increased the neuronal excitability induced in the E2-treated PD rats. K252a or anti-BDNF antibody inhibited the increased neuronal BDNF and TRPC6 expression in E2-treated PD rats; co-treatment of TRPC6 agonist and anti-BDNF antibody reduced neuronal death and increased the BDNF and TRPC6 expression in the hippocampal CA1 neurons in the E2-treated PD rats. These results suggest that the neuroprotective role of E2 in PD is closely related to enhance the activity of BDNF/TRPC6 pathway and is helpful to provide new prevention and strategies.
Collapse
|
12
|
Shi LS, Ji CH, Tang WQ, Liu Y, Zhang W, Guan W. Hippocampal miR-124 Participates in the Pathogenesis of Depression via Regulating the Expression of BDNF in a Chronic Social Defeat Stress Model of Depression. Curr Neurovasc Res 2022; 19:210-218. [PMID: 35838216 DOI: 10.2174/1567202619666220713105306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE As one of the most prevalent psychiatric disorders, the exact pathogenesis of depression remains elusive. Therefore, there is an urgent need to identify novel antidepressants for effective treatment. MicroRNA-124 (miR-124), the most abundant miRNA in brain tissue, plays a key effect on adult neurogenesis and neuronal differentiation. However, the mechanism of miR-124 in depression has not been clarified so far. The aim of this study is to provide broad insight into the mechanisms underlying depression. METHODS In the study, we used the forced swim test (FST), the tail suspension test (TST), and a Chronic Social Defeat Stress (CSDS) mice model of depression. Quantitative real-time reverse transcription PCR (qRT-PCR), western blotting, immunofluorescence and virus-mediated gene transfer were used together. The level of plasma corticosterone in mice was analyzed by Enzyme Linked Immunosorbent Assay (ELISA). RESULTS It was found that CSDS robustly increased the level of miR-124 in the hippocampus. Genetic knockdown of hippocampal miR-124 produced significant antidepressant-like effects in the CSDS model of depression. Furthermore, AAV-siR-124-EGFP treatment increased the level of plasma corticosterone in CSDS-induced mice. Moreover, it was found that the antidepressant-like effects induced by miR-124 inhibition required the hippocampal BDNF-TrkB system. CONCLUSION Hippocampal miR-124 participated in the pathogenesis of depression by regulating BDNF biosynthesis and was a feasible antidepressant target.
Collapse
Affiliation(s)
- Lin-Sheng Shi
- Department of Cardiology, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu, China
| | - Chun-Hui Ji
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Wen-Qian Tang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Yue Liu
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| |
Collapse
|
13
|
Zang E, Qiu B, Chen N, Li C, Liu Q, Zhang M, Liu Y, Li M. Xanthoceras sorbifolium Bunge: A Review on Botany, Phytochemistry, Pharmacology, and Applications. Front Pharmacol 2021; 12:708549. [PMID: 34526898 PMCID: PMC8435727 DOI: 10.3389/fphar.2021.708549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Xanthoceras sorbifolium Bunge (Sapindaceae) is a native Chinese plant with promising applications as a biofuel feedstock and a source of novel drugs. Historical records and documents from different periods have mentioned the use of X. sorbifolium and its botanical constituents in treating diseases, highlighting its central role in Chinese and Mongolian traditional medicinal therapies. Phytochemical research has focused on the husks, leaves, trunks, and branches of this herb. A total of 278 chemical compounds have been isolated and divided into 8 categories: triterpenoids, flavonoids, phenylpropanoids, steroids, phenols, fatty acids, alkaloids, and quinones. Modern pharmacological studies on X. sorbifolium have demonstrated positive effects on learning and memory, as well as anti-inflammatory, anti-tumor, and anti-oxidative properties. This review provides a comprehensive analysis of the available research on X. sorbifolium, focusing on the relationship between chemical constituents, traditional uses, and pharmacological effects. We also assess the potential for therapeutic and other applications of this plant in support of further research and development of X. sorbifolium.
Collapse
Affiliation(s)
- Erhuan Zang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Bin Qiu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China
| | - Namuhan Chen
- Pharmaceutical Laboratory, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
| | - Caifeng Li
- Pharmaceutical Laboratory, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
| | - Qian Liu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Min Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Yuchao Liu
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Pharmaceutical Laboratory, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou, China
| |
Collapse
|