1
|
Ignacio-Mejía I, Contreras-García IJ, Pichardo-Macías LA, García-Cruz ME, Ramírez Mendiola BA, Bandala C, Medina-Campos ON, Pedraza-Chaverri J, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG. Effect of Levetiracetam on Oxidant-Antioxidant Activity during Long-Term Temporal Lobe Epilepsy in Rats. Int J Mol Sci 2024; 25:9313. [PMID: 39273262 PMCID: PMC11395009 DOI: 10.3390/ijms25179313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is a disorder characterized by a predisposition to generate seizures. Levetiracetam (LEV) is an antiseizure drug that has demonstrated oxidant-antioxidant effects during the early stages of epilepsy in several animal models. However, the effect of LEV on oxidant-antioxidant activity during long-term epilepsy has not been studied. Therefore, the objective of the present study was to determine the effects of LEV on the concentrations of five antioxidant enzymes and on the levels of four oxidant stress markers in the hippocampus of rats with temporal lobe epilepsy at 5.7 months after status epilepticus (SE). The results revealed that superoxide dismutase (SOD) activity was significantly greater in the epileptic group (EPI) than in the control (CTRL), CTRL + LEV and EPI + LEV groups. No significant differences were found among the groups' oxidant markers. However, the ratios of SOD/hydrogen peroxide (H2O2), SOD/glutathione peroxidase (GPx) and SOD/GPx + catalase (CAT) were greater in the EPI group than in the CTRL and EPI + LEV groups. Additionally, there was a positive correlation between SOD activity and GPx activity in the EPI + LEV group. LEV-mediated modulation of the antioxidant system appears to be time dependent; at 5.7 months after SE, the role of LEV may be as a stabilizer of the redox state.
Collapse
Affiliation(s)
- Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
| | - Itzel Jatziri Contreras-García
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico
| | - Mercedes Edna García-Cruz
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | | - Cindy Bandala
- Laboratorio de Neurociencia Traslacional Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11410, Mexico
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | |
Collapse
|
2
|
Rivadeneyra-Domínguez E, Zamora-Bello I, Rodríguez-Landa JF, Ortega-García AA, Rosales-Sánchez Ó. Emblica officinalis Gaertn as a Potential Alternative Therapy for the Treatment of Epilepsy: An Animal Study. Dose Response 2024; 22:15593258241282018. [PMID: 39247123 PMCID: PMC11378198 DOI: 10.1177/15593258241282018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction: Epilepsy is a neurological disorder characterized by recurrent seizures. Although antiepileptic drugs (AEDs) reduce the frequency of epileptic seizures, they can cause renal and hepatic damage. Several preclinical studies have indicated that Emblica officinalis Gaertn (AMLA) exerts an anticonvulsant effect related to its tannin and polyphenol content. Objective: We aim to evaluate the anticonvulsant effects of chronic oral AMLA administration and its impact on biochemical and hematological parameters in rats. Methods: Twenty-eight male Wistar rats (250 to 300 g) were divided into four experimental groups (n = 7): vehicle (purified water), AMLA (500 and 700 mg/kg), and carbamazepine (CBZ) (300 mg/kg) as the pharmacological control of anticonvulsant activity. Treatments were administered orally every 24 hours for 28 days, while carbamazepine was administered every 48 hours for 5 days before the behavioral, biochemical, and hematological test. On day 29, Status epilepticus (SE) was induced using the lithium-pilocarpine model (3 mEq/kg, i.p. and 30 mg/kg, s.c.), after which the behavioral and biochemical effects were evaluated. Results: The AMLA 500 mg/kg and CBZ 300 mg/kg groups presented fewer phase V seizures than the vehicle group did. None of the treatments modified biochemical or hematological parameters. Conclusion: AMLA could be considered as a potential alternative therapy for the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Isaac Zamora-Bello
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, México
| | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, México
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, México
| | | | | |
Collapse
|
3
|
Escobar-Espinal DM, Vivanco-Estela AN, Barros N, Dos Santos Pereira M, Guimaraes FS, Del Bel E, Nascimento GC. Cannabidiol and it fluorinate analog PECS-101 reduces hyperalgesia and allodynia in trigeminal neuralgia via TRPV1 receptors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110996. [PMID: 38508408 DOI: 10.1016/j.pnpbp.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Trigeminal neuralgia (TN) is an intense and debilitating orofacial pain. The gold standard treatment for TN is carbamazepine. This antiepileptic drug provides pain relief with limited efficacy and side effects. To study the antinociceptive potential of cannabidiol (CBD) and its fluorinated analog PECS-101 (former HUF-101), we induced unilateral chronic constriction injury of the infraorbital nerve (IoN-CCI) in male Wistar rats. Seven days of treatment with CBD (30 mg/kg), PECS-101 (3, 10, and 30 mg/kg), or carbamazepine (10 and 30 mg/kg) reduced allodynia and hyperalgesia responses. Unlike carbamazepine, CBD and PECS-101 did not impair motor activity. The relief of the hypersensitive reactions has been associated with transient receptor potential vanilloid type 1 (TRPV1) modulation in the trigeminal spinal nucleus. CBD (30 mg/kg) and PECS-101 (10 and 30 mg/kg) reversed the increased expression of TRPV1 induced by IoN-CCI in this nucleus. Using a pharmacological strategy, the combination of the selective TRPV1 antagonist (capsazepine-CPZ - 5 mg/kg) with sub-effective doses of CBD (3 and 10 mg/kg) is also able to reverse the IoN-CCI-induced allodynia and hyperalgesia responses. This effect was accompanied by reduced TRPV1 protein expression in the trigeminal spinal nucleus. Our results suggest that CBD and PECS-101 may benefit trigeminal neuralgia without motor coordination impairments. PECS-101 is more potent against the hypernociceptive and motor impairment induced by TN compared to CBD and carbamazepine. The antinociceptive effect of these cannabinoids is partially mediated by TRPV1 receptors in the caudal part of the trigeminal spinal nucleus, the first central station of orofacial pain processing.
Collapse
Affiliation(s)
- Daniela Maria Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Airam Nicole Vivanco-Estela
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Núbia Barros
- Department of Neuroscience, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Maurício Dos Santos Pereira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Francisco Silveira Guimaraes
- Department of Neuroscience, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil.
| | - Glauce C Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil.
| |
Collapse
|
4
|
Evaluation of the Antioxidant Activity of Levetiracetam in a Temporal Lobe Epilepsy Model. Biomedicines 2023; 11:biomedicines11030848. [PMID: 36979827 PMCID: PMC10045287 DOI: 10.3390/biomedicines11030848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Epilepsy is a neurological disorder in which it has been shown that the presence of oxidative stress (OS) is implicated in epileptogenesis. The literature has shown that some antiseizure drugs (ASD) have neuroprotective properties. Levetiracetam (LEV) is a drug commonly used as an ASD, and in some studies, it has been found to possess antioxidant properties. Because the antioxidant effects of LEV have not been demonstrated in the chronic phase of epilepsy, the objective of this study was to evaluate, for the first time, the effects of LEV on the oxidant–antioxidant status in the hippocampus of rats with temporal lobe epilepsy (TLE). The in vitro scavenging capacity of LEV was evaluated. LEV administration in rats with TLE significantly increased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, but did not change glutathione peroxidase (GPx) activity, and significantly decreased glutathione reductase (GR) activity in comparison with epileptic rats. LEV administration in rats with TLE significantly reduced hydrogen peroxide (H2O2) levels but did not change lipoperoxidation and carbonylated protein levels in comparison with epileptic rats. In addition, LEV showed in vitro scavenging activity against hydroxyl radical (HO•). LEV showed significant antioxidant effects in relation to restoring the redox balance in the hippocampus of rats with TLE. In vitro, LEV demonstrated direct antioxidant activity against HO•.
Collapse
|
5
|
Semenets AP, Suleiman MM, Fedosov AI, Shtrygol SY, Havrylov IO, Mishchenko MV, Kovalenko SM, Georgiyants VA, Perekhoda LO. Synthesis, docking, and biological evaluation of novel 1-benzyl-4-(4-(R)-5-sulfonylidene-4,5-dihydro-1H-1,2,4-triazol-3-yl)pyrrolidin-2-ones as potential nootropic agents. Eur J Med Chem 2022; 244:114823. [DOI: 10.1016/j.ejmech.2022.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
|
6
|
Contreras-García IJ, Cárdenas-Rodríguez N, Romo-Mancillas A, Bandala C, Zamudio SR, Gómez-Manzo S, Hernández-Ochoa B, Mendoza-Torreblanca JG, Pichardo-Macías LA. Levetiracetam Mechanisms of Action: From Molecules to Systems. Pharmaceuticals (Basel) 2022; 15:ph15040475. [PMID: 35455472 PMCID: PMC9030752 DOI: 10.3390/ph15040475] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.
Collapse
Affiliation(s)
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico;
| | - Cindy Bandala
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Sergio R. Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Julieta Griselda Mendoza-Torreblanca
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Correspondence: (J.G.M.-T.); (L.A.P.-M.); Tel.: +52-55-1084-0900 (ext. 1441) (J.G.M.-T.)
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
- Correspondence: (J.G.M.-T.); (L.A.P.-M.); Tel.: +52-55-1084-0900 (ext. 1441) (J.G.M.-T.)
| |
Collapse
|
7
|
Pottoo FH, Salahuddin M, Khan FA, AL Dhamen MA, Alsaeed WJ, Gomaa MS, Vatte C, Alomary MN. Combinatorial Regimen of Carbamazepine and Imipramine Exhibits Synergism against Grandmal Epilepsy in Rats: Inhibition of Pro-Inflammatory Cytokines and PI3K/Akt/mTOR Signaling Pathway. Pharmaceuticals (Basel) 2021; 14:1204. [PMID: 34832986 PMCID: PMC8624327 DOI: 10.3390/ph14111204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a neurodegenerative disorder that causes recurring seizures. Thirty-five percent of patients remain refractory, with a higher prevalence of depression. We investigated the anticonvulsant efficacy of carbamazepine (CBZ; 20 and 50 mg/kg), imipramine (IMI; 10 and 20 mg/kg) alone, and as a low dose combination. This preclinical investigation included dosing of rats for 14 days followed by elicitation of electroshock on the last day of treatment. Along with behavioral monitoring, the rat hippocampus was processed for quantification of mTOR, IL-1β, IL-6 and TNF-α levels. The histopathological analysis of rat hippocampus was performed to ascertain neuroprotection. In vitro studies and in silico studies were also conducted. We found that the low dose combinatorial therapy of CBZ (20 mg/kg) + IMI (10 mg/kg) exhibits synergism (p < 0.001) in abrogation of maximal electroshock (MES) induced convulsions/tonic hind limb extension (THLE), by reducing levels of pro-inflammatory cytokines, and weakening of the PI3K/Akt/mTOR signal. The combination also exhibits cooperative binding at the Akt. As far as neuroprotection is concerned, the said combination increased cell viability by 166.37% compared to Pentylenetetrazol (PTZ) treated HEK-293 cells. Thus, the combination of CBZ (20 mg/kg) + IMI (10 mg/kg) is a fruitful combination therapy to elevate seizure threshold and provide neuroprotection.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem cell Research, Institute for Research and Medical Consultation, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Marwa Abdullah AL Dhamen
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Walaa Jafar Alsaeed
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Chittibabu Vatte
- Department of Biochemistry, College of Medicine, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, Kind Abdulaziz City for Science and Technology (KACST), P.O. Box 1982, Riyadh 11442, Saudi Arabia
| |
Collapse
|