1
|
Chan HL, Chen RS, Kuo CC, Chen YT, Liaw JW, Liao GS, Lin WT, Chien SH, Chang YJ. Laser-light cueing shoes with integrated foot pressure and inertial sensing for investigating the impact of visual cueing on gait characteristics in Parkinson's disease individuals. Front Bioeng Biotechnol 2024; 12:1334403. [PMID: 38357707 PMCID: PMC10865238 DOI: 10.3389/fbioe.2024.1334403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Gait disorders are a fundamental challenge in Parkinson's disease (PD). The use of laser-light visual cues emitted from shoes has demonstrated effective in improving freezing of gait within less restrictive environments. However, the effectiveness of shoes-based laser-light cueing may vary among individuals with PD who have different types of impairments. We introduced an innovative laser-light visual shoes system capable of producing alternating visual cues for the left and right feet through one-side cueing at a time, while simultaneously recording foot inertial data and foot pressures. The effects of this visual cueing system on gait patterns were assessed in individuals with PD, both those with well-gait and those with worse-gait. Our device successfully quantified gait characteristics, including the asymmetry in the center of pressure trajectory, in individuals with PD. Furthermore, visual cueing prolonged stride times and increased the percentage of stance phase, while concurrently reducing stride length in PD individuals with well-gait. Conversely, in PD individuals with worse-gait, visual cueing resulted in a decreased freeze index and a reduction in the proportion of intervals prone to freezing episodes. The effects of visual cueing varied between PD individuals with well-gait and those with worse-gait. Visual cueing slowed down gait in the well-gait group while it appeared to mitigate freezing episodes in worse-gait group. Future researches, including enhancements to extend the projection distance of visual cues and clinical assessments conducted in real-world settings, will help establish the clinical utility of our proposed visual cueing system.
Collapse
Affiliation(s)
- Hsiao-Lung Chan
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chung Kuo
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Tao Chen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Jiunn-Woei Liaw
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
| | - Guo-Sheng Liao
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Ting Lin
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsun Chien
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ju Chang
- Neuroscience Research Center, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, and Health Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|