1
|
Colón-Mercado JM, Torrado-Tapias AI, Salgado IK, Santiago JM, Rivera SEO, Bracho-Rincon DP, Rivera LHP, Miranda JD. The sexually dimorphic expression of glutamate transporters and their implication in pain after spinal cord injury. Neural Regen Res 2025; 20:3317-3329. [PMID: 39314150 DOI: 10.4103/nrr.nrr-d-24-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00033/figure1/v/2024-12-20T164640Z/r/image-tiff In addition to the loss of motor function, ~ 60% of patients develop pain after spinal cord injury. The cellular-molecular mechanisms are not well understood, but the data suggests that plasticity within the rostral, epicenter, and caudal penumbra of the injury site initiates a cellular-molecular interplay that acts as a rewiring mechanism leading to central neuropathic pain. Sprouting can lead to the formation of new connections triggering abnormal sensory transmission. The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity. Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen. In this study, we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury. We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters, leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting. Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control (placebo). We used von Frey monofilaments and the "up-down method" to evaluate mechanical allodynia. Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sex-dependent effect. The expression profile of glutamatergic transporters (excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1) revealed a sexual dimorphism in the rostral, epicenter, and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes. Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents. Analyses of peptidergic (calcitonin gene-related peptide-α) and non-peptidergic (isolectin B4) fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/ isolectin B4 ratio in comparison with sham, suggesting increased receptive fields in the dorsal horn. Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats, this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury. Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord. The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain, an area with a critical need for treatment.
Collapse
Affiliation(s)
| | | | - Iris K Salgado
- Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - José M Santiago
- University of Puerto Rico, Carolina Campus, Carolina, PR, USA
| | - Samuel E Ocasio Rivera
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | | | - Luis H Pagan Rivera
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Jorge D Miranda
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
2
|
van Veggel L, Mocking TA, Sijben HJ, Liu R, Gorostiola González M, Dilweg MA, Royakkers J, Li A, Kumar V, Dong YY, Bullock A, Sauer DB, Diliën H, van Westen GJ, Schreiber R, Heitman LH, Vanmierlo T. Still in Search for an EAAT Activator: GT949 Does Not Activate EAAT2, nor EAAT3 in Impedance and Radioligand Uptake Assays. ACS Chem Neurosci 2024; 15:1424-1431. [PMID: 38478848 PMCID: PMC10995951 DOI: 10.1021/acschemneuro.3c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Excitatory amino acid transporters (EAATs) are important regulators of amino acid transport and in particular glutamate. Recently, more interest has arisen in these transporters in the context of neurodegenerative diseases. This calls for ways to modulate these targets to drive glutamate transport, EAAT2 and EAAT3 in particular. Several inhibitors (competitive and noncompetitive) exist to block glutamate transport; however, activators remain scarce. Recently, GT949 was proposed as a selective activator of EAAT2, as tested in a radioligand uptake assay. In the presented research, we aimed to validate the use of GT949 to activate EAAT2-driven glutamate transport by applying an innovative, impedance-based, whole-cell assay (xCELLigence). A broad range of GT949 concentrations in a variety of cellular environments were tested in this assay. As expected, no activation of EAAT3 could be detected. Yet, surprisingly, no biological activation of GT949 on EAAT2 could be observed in this assay either. To validate whether the impedance-based assay was not suited to pick up increased glutamate uptake or if the compound might not induce activation in this setup, we performed radioligand uptake assays. Two setups were utilized; a novel method compared to previously published research, and in a reproducible fashion copying the methods used in the existing literature. Nonetheless, activation of neither EAAT2 nor EAAT3 could be observed in these assays. Furthermore, no evidence of GT949 binding or stabilization of purified EAAT2 could be observed in a thermal shift assay. To conclude, based on experimental evidence in the present study GT949 requires specific assay conditions, which are difficult to reproduce, and the compound cannot simply be classified as an activator of EAAT2 based on the presented evidence. Hence, further research is required to develop the tools needed to identify new EAAT modulators and use their potential as a therapeutic target.
Collapse
Affiliation(s)
- Lieve van Veggel
- Department
of Neuroscience, BIOMED Biomedical Research Institute, Faculty of
Medicine and Life Sciences, Hasselt University, 3590 Hasselt, Belgium
- Department
of Psychiatry and Neuropsychology, Division of Translational Neuroscience,
European Graduate School of Neuroscience, School for Mental Health
and Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
- University
MS Center (UMSC), 3900 Hasselt-Pelt, Belgium
| | - Tamara A.M. Mocking
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Hubert J. Sijben
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Rongfang Liu
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Marina Gorostiola González
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Majlen A. Dilweg
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Jeroen Royakkers
- Sensor
Engineering
Department, Faculty of Science and Engineering, Maastricht University, 6200 Maastricht, The Netherlands
| | - Anna Li
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Vijay Kumar
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Yin Yao Dong
- Nuffield
Department of Clinical Neurosciences, Weatherall Institute of Molecular
Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Alex Bullock
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - David B. Sauer
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Hanne Diliën
- Sensor
Engineering
Department, Faculty of Science and Engineering, Maastricht University, 6200 Maastricht, The Netherlands
| | - Gerard J.P. van Westen
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Rudy Schreiber
- Section
of Psychopharmacology, Neuropsychology and Psychopharmacology, Faculty
of Psychology and Neuroscience, Maastricht
University, 6200 Maastricht, The Netherlands
| | - Laura H. Heitman
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
- Oncode
Institute, Einsteinweg
55, 2333 Leiden, The Netherlands
| | - Tim Vanmierlo
- Department
of Neuroscience, BIOMED Biomedical Research Institute, Faculty of
Medicine and Life Sciences, Hasselt University, 3590 Hasselt, Belgium
- Department
of Psychiatry and Neuropsychology, Division of Translational Neuroscience,
European Graduate School of Neuroscience, School for Mental Health
and Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
- University
MS Center (UMSC), 3900 Hasselt-Pelt, Belgium
| |
Collapse
|
3
|
Kato T, Kusakizako T, Jin C, Zhou X, Ohgaki R, Quan L, Xu M, Okuda S, Kobayashi K, Yamashita K, Nishizawa T, Kanai Y, Nureki O. Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2. Nat Commun 2022; 13:4714. [PMID: 35953475 PMCID: PMC9372063 DOI: 10.1038/s41467-022-32442-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Glutamate is a pivotal excitatory neurotransmitter in mammalian brains, but excessive glutamate causes numerous neural disorders. Almost all extracellular glutamate is retrieved by the glial transporter, Excitatory Amino Acid Transporter 2 (EAAT2), belonging to the SLC1A family. However, in some cancers, EAAT2 expression is enhanced and causes resistance to therapies by metabolic disturbance. Despite its crucial roles, the detailed structural information about EAAT2 has not been available. Here, we report cryo-EM structures of human EAAT2 in substrate-free and selective inhibitor WAY213613-bound states at 3.2 Å and 2.8 Å, respectively. EAAT2 forms a trimer, with each protomer consisting of transport and scaffold domains. Along with a glutamate-binding site, the transport domain possesses a cavity that could be disrupted during the transport cycle. WAY213613 occupies both the glutamate-binding site and cavity of EAAT2 to interfere with its alternating access, where the sensitivity is defined by the inner environment of the cavity. We provide the characterization of the molecular features of EAAT2 and its selective inhibition mechanism that may facilitate structure-based drug design for EAAT2. EAAT2 is an amino acid transporter implicated in glutamate homeostasis in brain and therapy resistance of cancer cells. Here, the authors report cryo-EM structures and reveal inhibitory mechanisms via selective inhibitor WAY213613.
Collapse
Affiliation(s)
- Takafumi Kato
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Biochemistry, The University of Oxford, Oxford, UK
| | - Tsukasa Kusakizako
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xinyu Zhou
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Osaka, Japan
| | - LiLi Quan
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Minhui Xu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kan Kobayashi
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Peptidream Inc, Kawasaki, Japan
| | - Keitaro Yamashita
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tomohiro Nishizawa
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Osaka, Japan.
| | - Osamu Nureki
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|