1
|
Yue X, Pang M, Chen Y, Cheng Z, Zhou R, Wang Y, Zha Z, Huang L. Puerarin alleviates symptoms of preeclampsia through the repression of trophoblast ferroptosis via the CREB/HO-1 pathway. Placenta 2024; 158:145-155. [PMID: 39490110 DOI: 10.1016/j.placenta.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is a pregnancy-associated complication characterised by new-onset hypertension and proteinuria. This study explored the therapeutic potential of puerarin (Pue) in PE and investigated the underlying mechanism, with a focus on placental ferroptosis. METHODS Using an NG-nitro-L-arginine methyl ester (L-NAME)-induced PE mouse model, we assessed the effects of Pue on PE phenotypes and placental ferroptosis. Antioxidative and anti-ferroptotic effects of Pue were studied in three ferroptotic cell models (hypoxia/reperfusion, cobalt chloride, and erastin). The regulation of Pue on cAMP response element binding protein (CREB) and heme oxygenase-1 (HO-1) was evaluated through gain- and loss-of-function assays. Luciferase assays were used to elucidate the effect of Flag-CREB on Hmox1 promoter fragments. CREB/HO-1 modulation by Pue was validated in mouse placentas with PE. RESULTS Pue significantly alleviated maternal hypertension, proteinuria, fetal growth restriction, and placental damage in PE mice. This was associated with an upregulation of the anti-ferroptosis system (glutathione peroxidase 4 [GPX4], cys2/glutamate antiporter [SLC7A11], and glutathione [GSH]) and repression of reactive oxygen species (ROS) and malondialdehyde (MDA) in trophoblasts. Pue reduced HO-1 and CREB, and HO-1 deficiency upregulated GPX4 and SLC7A11. Manipulation of CREB expression led to changes in HO-1/GPX4; whereas, the regulation reversed by Pue administration. Flag-CREB enhanced luciferase activity on the full length Hmox1 promoter (-2000/+78), which contains three CREB1 binding sites (S1-S3). In contrast, no increase in luciferase activity was observed with promoter fragments (-850/+78) and (-550/+78), which contain only the CREB1 binding sites S2 and S3, respectively. DISCUSSION Pue ameliorated PE-like symptoms in mice by repressing trophoblast ferroptosis via inhibition of CREB signalling and affecting the Homx1 promoter.
Collapse
Affiliation(s)
- Xiaojing Yue
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Menglan Pang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yun Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhixing Cheng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ruisi Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhiqiang Zha
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
2
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
3
|
Peruri A, Morgan A, D’Souza A, Mellon B, Hung CW, Kayal G, Shin H, Nguyen K, Zahed M, Yount M, Ellis R, Wynne T, Fritz V, Simmons Z, Roballo KCS. Pineal Gland from the Cell Culture to Animal Models: A Review. Life (Basel) 2022; 12:1057. [PMID: 35888145 PMCID: PMC9317964 DOI: 10.3390/life12071057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 12/11/2022] Open
Abstract
This review demonstrates current literature on pineal gland physiology, pathology, and animal model experiments to concisely explore future needs in research development with respect to pineal gland function and neuro-regenerative properties. The pineal gland plays an integral role in sleep and recovery by promoting physiologic circadian rhythms via production and release of melatonin. Yet, the current literature shows that the pineal gland has neuroprotective effects that modulate both peripheral and central nerve injuries through several direct and indirect mechanisms, such as angiogenesis and induction of growth factors and anti-inflammatory mediators. Animal models have also shown correlations between pineal gland function and metabolic homeostasis. Studies have shown that a functional pineal gland is essential in preventing and slowing the progression of certain diseases such as diabetes, osteoporosis, vertebral osteoarthritis, and neurodegenerative processes. Lastly, the array of cell culturing methods and animal models that can be used to further develop the study of pineal gland function and nervous system injury were reviewed.
Collapse
Affiliation(s)
- Alekhya Peruri
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Alexandra Morgan
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Alida D’Souza
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Bridget Mellon
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Carey W. Hung
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Gabriella Kayal
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Haejung Shin
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Kim Nguyen
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Malek Zahed
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Mason Yount
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Reilly Ellis
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Taylor Wynne
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Virginia Fritz
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Zachary Simmons
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
| | - Kelly C. S. Roballo
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA; (A.P.); (A.M.); (A.D.); (B.M.); (C.W.H.); (G.K.); (H.S.); (K.N.); (M.Z.); (M.Y.); (R.E.); (T.W.); (V.F.); (Z.S.)
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 1410 Prices Fork, Blacksburg, VA 24060, USA
| |
Collapse
|