1
|
Tan Z, Xia R, Zhao X, Yang Z, Liu H, Wang W. Potential key pathophysiological participant and treatment target in autism spectrum disorder: Microglia. Mol Cell Neurosci 2024; 131:103980. [PMID: 39580060 DOI: 10.1016/j.mcn.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by social and communication deficits, as well as restricted or repetitive behaviors or interests. Although the etiology of ASD remains unclear, there is abundant evidence suggesting that microglial dysfunction is likely to be a significant factor in the pathophysiology of ASD. Microglia, the primary innate immune cells in the central nervous system (CNS), play a crucial role in brain development and homeostasis. Recently, numerous studies have shown that microglia in ASD models display various abnormalities including morphology, function, cellular interactions, genetic and epigenetic factors, as well as the expression of receptors, transcription factors, and cytokines. They impact normal neural development through various mechanisms contributing to ASD, such as neuroinflammation, and alterations in synaptic formation and pruning. The focus of this review is on recent studies regarding microglial abnormalities in ASD and their effects on the onset and progression of ASD at both cellular and molecular levels. It can provide insight into the specific contribution of microglia to ASD pathogenesis and help in designing potential therapeutic and preventative strategies targeting microglia.
Collapse
Affiliation(s)
- Zehua Tan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ruixin Xia
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Zhao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zile Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
2
|
Feng YR, Zhang Q, Miao JK, Yang T, Chen J, Chen HY, Mou QH, Xiang XL, Long D, Wei QH, Wu Y, Li TY. Association of the retinol to all-trans retinoic acid pathway with autism spectrum disorder. World J Pediatr 2024; 20:1043-1058. [PMID: 38789720 DOI: 10.1007/s12519-024-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex group of neurodevelopmental disorders. Research has highlighted a close association between the retinoic acid (RA) signaling pathway and ASD. This study investigates alterations in the vitamin A (VA, retinol) to RA metabolic pathway in children with ASD and speculates on the underlying reasons for these changes. We propose a subtype characterized by downregulated RA signaling in ASD, laying the groundwork for precise diagnosis and treatment research. METHODS We included 489 children with ASD and 280 typically developing (TD) children. Those with ASD underwent evaluations of core symptoms and neuro-developmental levels, which were conducted by professional developmental behavior physicians using assessment scales. Serum VA and all-trans RA (atRA) levels were determined by high-performance liquid chromatography and ultra-high-performance liquid chromatography-tandem mass spectrometry. The expression levels and concentrations of enzyme molecules such as retinol dehydrogenase 10 were assessed using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Children with ASD exhibited reduced serum atRA, accompanied by a downregulation of atRA synthesis enzymes. The reduction in serum atRA levels was linked not only to VA levels but also to the aberrant expression of metabolic enzymes responsible for atRA. Furthermore, the serum atRA levels in children with ASD were more strongly correlated with core symptoms and neurodevelopmental levels than VA levels. CONCLUSION Children with ASD exhibited a dual regulation of reduced serum atRA levels, influenced by both VA levels and abnormal expression of atRA metabolic enzymes.
Collapse
Affiliation(s)
- Yu-Ru Feng
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Qian Zhang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Jing-Kun Miao
- Department of Pediatrics, Women and Children' Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Ting Yang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Jie Chen
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Hong-Yu Chen
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Qiu-Hong Mou
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Xue-Li Xiang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Dan Long
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Qiu-Hong Wei
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Yuan Wu
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Ting-Yu Li
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China.
| |
Collapse
|
3
|
Tagliatti E, Bizzotto M, Morini R, Filipello F, Rasile M, Matteoli M. Prenatal drivers of microglia vulnerability in the adult. Immunol Rev 2024; 327:100-110. [PMID: 39508795 DOI: 10.1111/imr.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Environmental insults during early development heavily affect brain trajectories. Among these, maternal infections, high-fat diet regimens, and sleep disturbances pose a significant risk for neurodevelopmental derangements in the offspring. Notably, scattered evidence is starting to emerge that also paternal lifestyle habits may impact the offspring development. Given their key role in controlling neurogenesis, synaptogenesis and shaping neuronal circuits, microglia represent the most likely suspects of mediating the detrimental effects of prenatal insults. For some of these environmental triggers, like maternal infections, ample literature evidence demonstrates the central role of microglia, also delineating the specific transcriptomic and proteomic profiles induced by these insults. In other contexts, the analysis of microglia is still in its infancy. Fostering these studies is needed to define microglia as potential therapeutic target in the frame of disorders consequent to maternal immune activation.
Collapse
Affiliation(s)
| | | | | | | | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
4
|
Xu Y, Xin X, Tao T. Decoding the neurotoxic effects of propofol: insights into the RARα-Snhg1-Bdnf regulatory cascade. Am J Physiol Cell Physiol 2024; 326:C1735-C1752. [PMID: 38618701 PMCID: PMC11371332 DOI: 10.1152/ajpcell.00547.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/26/2023] [Accepted: 01/27/2024] [Indexed: 04/16/2024]
Abstract
The potential neurotoxic effects of propofol, an extensively utilized anesthetic, underline the urgency to comprehend its influence on neuronal health. Insights into the role of the retinoic acid receptor-α, small nucleolar RNA host gene 1, and brain-derived neurotrophic factor (RARα-Snhg1-Bdnf) network can offer significant advancements in minimizing these effects. The study targets the exploration of the RARα and Snhg1 regulatory network's influence on Bdnf expression in the realm of propofol-induced neurotoxicity. Harnessing the Gene Expression Omnibus (GEO) database and utilizing JASPAR and RNA-Protein Interaction Prediction (RPISeq) database for projections, the study embarks on an in-depth analysis employing both in vitro and in vivo models. The findings draw a clear link between propofol-induced neurotoxicity and the amplification of RAR signaling pathways, impacting hippocampal development and apoptosis and leading to increased RARα and Snhg1 and decreased Bdnf. Propofol is inferred to accentuate neurotoxicity by heightening RARα and Snhg1 interactions, culminating in Bdnf suppression.NEW & NOTEWORTHY This study aimed to decode propofol's neurotoxic effects on the regulatory cascade, provide insights into the RARα-Snhg1-Bdnf interaction, apply extensive validation techniques, provide a detailed analysis and exploration of propofol's neurotoxicity, and offer a comprehensive approach to understanding molecular interactions.
Collapse
Affiliation(s)
- Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| | - Xin Xin
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| |
Collapse
|
5
|
Noshadian M, Ragerdi Kashani I, Asadi-Golshan R, Zarini D, Ghafari N, Zahedi E, Pasbakhsh P. Benefits of bone marrow mesenchymal stem cells compared to their conditioned medium in valproic acid-induced autism in rats. Mol Biol Rep 2024; 51:353. [PMID: 38401030 DOI: 10.1007/s11033-024-09292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, a limited range of activities, and deficiencies in social communications. Bone marrow mesenchymal stem cells (BM-MSCs), which secrete factors that stimulate surrounding microenvironment, and BM-MSCs conditioned medium (BM-MSCs-CM), which contains cell-secreted products, have been speculated to hold potential as a therapy for ASD. This study aimed to compare the therapeutic effects of BM-MSCs and BM-MSCs-CM on behavioral and microglial changes in an animal model of autism induced by valproic acid (VPA). METHODS AND RESULTS Pregnant Wistar rats were administered by VPA at a dose of 600 mg/kg at 12.5 days post-conception. After birth, male pups were included in the study. At 6 weeks of age, one group of rats received intranasal administration of BM-MSCs, while another group received BM-MSCs-CM. The rats were allowed to recover for 2 weeks. Behavioral tests, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry were performed. Both BM-MSCs and BM-MSCs-CM administration significantly improved some behavioral deficits. Furthermore, these treatments notably reduced Iba-1 marker associated with microgliosis. Additionally, there was a significant reduction in the expression of pro-inflammatory cytokines IL-1β and IL-6, and an increase in the levels of the anti-inflammatory cytokine IL-10 in rats administered by BM-MSCs and BM-MSCs-CM. CONCLUSIONS Post-developmental administration of BM-MSCs and BM-MSCs-CM can ameliorate prenatal neurodevelopmental deficits, restore cognitive and social behaviors, and modulate microglial and inflammatory markers. Results indicated that the improvement rate was higher in the BM-MSCs group than BM-MSCs-CM group.
Collapse
Affiliation(s)
- Mehrazin Noshadian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, 1461884513, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, 1461884513, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, 1461884513, Iran
| | - Davood Zarini
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, 1461884513, Iran
| | - Neda Ghafari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, 1461884513, Iran
| | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, 1461884513, Iran.
| |
Collapse
|