• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4641775)   Today's Articles (2834)   Subscriber (50446)
For: Mahony S, Benos PV, Smith TJ, Golden A. Self-organizing neural networks to support the discovery of DNA-binding motifs. Neural Netw 2006;19:950-62. [PMID: 16839740 DOI: 10.1016/j.neunet.2006.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Number Cited by Other Article(s)
1
Zhang Y, Wang P, Yan M. An Entropy-Based Position Projection Algorithm for Motif Discovery. BIOMED RESEARCH INTERNATIONAL 2016;2016:9127474. [PMID: 27882329 PMCID: PMC5110948 DOI: 10.1155/2016/9127474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/20/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022]
2
Harigua-Souiai E, Cortes-Ciriano I, Desdouits N, Malliavin TE, Guizani I, Nilges M, Blondel A, Bouvier G. Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis. BMC Bioinformatics 2015;16:93. [PMID: 25888251 PMCID: PMC4381396 DOI: 10.1186/s12859-015-0518-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/24/2015] [Indexed: 11/24/2022]  Open
3
Discovering common recurrent patterns in multiple strings over large alphabets. Pattern Recognit Lett 2015. [DOI: 10.1016/j.patrec.2014.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
4
Hassanien AE, Al-Shammari ET, Ghali NI. Computational intelligence techniques in bioinformatics. Comput Biol Chem 2013;47:37-47. [PMID: 23891719 DOI: 10.1016/j.compbiolchem.2013.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/06/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
5
Sahu TK, Rao AR, Vasisht S, Singh N, Singh UP. Computational approaches, databases and tools for in silico motif discovery. Interdiscip Sci 2012;4:239-255. [PMID: 23354813 DOI: 10.1007/s12539-012-0141-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 04/12/2012] [Accepted: 06/13/2012] [Indexed: 06/01/2023]
6
Zhao H, Yang Y, Zhou Y. Structure-based prediction of DNA-binding proteins by structural alignment and a volume-fraction corrected DFIRE-based energy function. Bioinformatics 2010;26:1857-63. [PMID: 20525822 DOI: 10.1093/bioinformatics/btq295] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]  Open
7
Hervás-Martínez C, Martínez-Estudillo F, Carbonero-Ruz M. Multilogistic regression by means of evolutionary product-unit neural networks. Neural Netw 2008;21:951-61. [DOI: 10.1016/j.neunet.2007.12.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Accepted: 12/13/2007] [Indexed: 10/22/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA