1
|
Yamakou ME, Desroches M, Rodrigues S. Synchronization in STDP-driven memristive neural networks with time-varying topology. J Biol Phys 2023; 49:483-507. [PMID: 37656327 PMCID: PMC10651826 DOI: 10.1007/s10867-023-09642-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
Synchronization is a widespread phenomenon in the brain. Despite numerous studies, the specific parameter configurations of the synaptic network structure and learning rules needed to achieve robust and enduring synchronization in neurons driven by spike-timing-dependent plasticity (STDP) and temporal networks subject to homeostatic structural plasticity (HSP) rules remain unclear. Here, we bridge this gap by determining the configurations required to achieve high and stable degrees of complete synchronization (CS) and phase synchronization (PS) in time-varying small-world and random neural networks driven by STDP and HSP. In particular, we found that decreasing P (which enhances the strengthening effect of STDP on the average synaptic weight) and increasing F (which speeds up the swapping rate of synapses between neurons) always lead to higher and more stable degrees of CS and PS in small-world and random networks, provided that the network parameters such as the synaptic time delay [Formula: see text], the average degree [Formula: see text], and the rewiring probability [Formula: see text] have some appropriate values. When [Formula: see text], [Formula: see text], and [Formula: see text] are not fixed at these appropriate values, the degree and stability of CS and PS may increase or decrease when F increases, depending on the network topology. It is also found that the time delay [Formula: see text] can induce intermittent CS and PS whose occurrence is independent F. Our results could have applications in designing neuromorphic circuits for optimal information processing and transmission via synchronization phenomena.
Collapse
Affiliation(s)
- Marius E Yamakou
- Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058, Erlangen, Germany.
- Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstr. 22, 04103, Leipzig, Germany.
| | - Mathieu Desroches
- MathNeuro Project-Team, Inria Center at Université Côte d'Azur, 2004 route des Lucioles - BP 93, 06902, Cedex, Sophia Antipolis, France
| | - Serafim Rodrigues
- Mathematical, Computational and Experimental Neuroscience, Basque Center for Applied Mathematics, Alameda de Mazzaredo 14, 48009, Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
2
|
Protachevicz PR, Borges FS, Iarosz KC, Baptista MS, Lameu EL, Hansen M, Caldas IL, Szezech JD, Batista AM, Kurths J. Influence of Delayed Conductance on Neuronal Synchronization. Front Physiol 2020; 11:1053. [PMID: 33013451 PMCID: PMC7494968 DOI: 10.3389/fphys.2020.01053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
In the brain, the excitation-inhibition balance prevents abnormal synchronous behavior. However, known synaptic conductance intensity can be insufficient to account for the undesired synchronization. Due to this fact, we consider time delay in excitatory and inhibitory conductances and study its effect on the neuronal synchronization. In this work, we build a neuronal network composed of adaptive integrate-and-fire neurons coupled by means of delayed conductances. We observe that the time delay in the excitatory and inhibitory conductivities can alter both the state of the collective behavior (synchronous or desynchronous) and its type (spike or burst). For the weak coupling regime, we find that synchronization appears associated with neurons behaving with extremes highest and lowest mean firing frequency, in contrast to when desynchronization is present when neurons do not exhibit extreme values for the firing frequency. Synchronization can also be characterized by neurons presenting either the highest or the lowest levels in the mean synaptic current. For the strong coupling, synchronous burst activities can occur for delays in the inhibitory conductivity. For approximately equal-length delays in the excitatory and inhibitory conductances, desynchronous spikes activities are identified for both weak and strong coupling regimes. Therefore, our results show that not only the conductance intensity, but also short delays in the inhibitory conductance are relevant to avoid abnormal neuronal synchronization.
Collapse
Affiliation(s)
- Paulo R Protachevicz
- Instituto de Física, Universidade de São Paulo, São Paulo, Brazil.,Graduate Program in Science-Physics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Fernando S Borges
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Paulo, Brazil
| | - Kelly C Iarosz
- Instituto de Física, Universidade de São Paulo, São Paulo, Brazil.,Faculdade de Telêmaco Borba, FATEB, Telêmaco Borba, Brazil.,Graduate Program in Chemical Engineering, Federal Technological University of Paraná, Ponta Grossa, Brazil
| | - Murilo S Baptista
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom
| | - Ewandson L Lameu
- Cell Biology and Anatomy Department, University of Calgary, Calgary, AB, Canada
| | - Matheus Hansen
- Graduate Program in Science-Physics, State University of Ponta Grossa, Ponta Grossa, Brazil.,Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Iberê L Caldas
- Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
| | - José D Szezech
- Graduate Program in Science-Physics, State University of Ponta Grossa, Ponta Grossa, Brazil.,Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Antonio M Batista
- Instituto de Física, Universidade de São Paulo, São Paulo, Brazil.,Graduate Program in Science-Physics, State University of Ponta Grossa, Ponta Grossa, Brazil.,Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Jürgen Kurths
- Department of Physics, Humboldt University, Berlin, Germany.,Department Complexity Science, Potsdam Institute for Climate Impact Research, Potsdam, Germany.,Department of Human and Animal Physiology, Saratov State University, Saratov, Russia
| |
Collapse
|
3
|
Kim SY, Lim W. Effect of interpopulation spike-timing-dependent plasticity on synchronized rhythms in neuronal networks with inhibitory and excitatory populations. Cogn Neurodyn 2020; 14:535-567. [PMID: 32655716 DOI: 10.1007/s11571-020-09580-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/11/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
We consider a two-population network consisting of both inhibitory (I) interneurons and excitatory (E) pyramidal cells. This I-E neuronal network has adaptive dynamic I to E and E to I interpopulation synaptic strengths, governed by interpopulation spike-timing-dependent plasticity (STDP). In previous works without STDPs, fast sparsely synchronized rhythms, related to diverse cognitive functions, were found to appear in a range of noise intensity D for static synaptic strengths. Here, by varying D, we investigate the effect of interpopulation STDPs on fast sparsely synchronized rhythms that emerge in both the I- and the E-populations. Depending on values of D, long-term potentiation (LTP) and long-term depression (LTD) for population-averaged values of saturated interpopulation synaptic strengths are found to occur. Then, the degree of fast sparse synchronization varies due to effects of LTP and LTD. In a broad region of intermediate D, the degree of good synchronization (with higher synchronization degree) becomes decreased, while in a region of large D, the degree of bad synchronization (with lower synchronization degree) gets increased. Consequently, in each I- or E-population, the synchronization degree becomes nearly the same in a wide range of D (including both the intermediate and the large D regions). This kind of "equalization effect" is found to occur via cooperative interplay between the average occupation and pacing degrees of spikes (i.e., the average fraction of firing neurons and the average degree of phase coherence between spikes in each synchronized stripe of spikes in the raster plot of spikes) in fast sparsely synchronized rhythms. Finally, emergences of LTP and LTD of interpopulation synaptic strengths (leading to occurrence of equalization effect) are intensively investigated via a microscopic method based on the distributions of time delays between the pre- and the post-synaptic spike times.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| |
Collapse
|
4
|
Anomaly Detection of Wind Turbines Based on Deep Small-World Neural Network. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accurate and efficient condition monitoring is the key to enhance the reliability and security of wind turbines. In recent years, an intelligent anomaly detection method based on deep learning networks has been receiving increasing attention. Since accurately labeled data are usually difficult to obtain in real industries, this paper proposes a novel Deep Small-World Neural Network (DSWNN) on the basis of unsupervised learning to detect the early failures of wind turbines. During network construction, a regular auto-encoder network with multiple restricted Boltzmann machines is first constructed and pre-trained by using unlabeled data of wind turbines. After that, the trained network is transformed into a DSWNN model by randomly add-edges method, where the network parameters are fine-tuned by using minimal amounts of labeled data. In order to guard against the changes and disturbances of wind speed and reduce false alarms, an adaptive threshold based on extreme value theory is presented as the criterion of anomaly judgment. The DSWNN model is excellent in depth mining data characteristics and accurate measurement error. Last, two failure cases of wind turbine anomaly detection are given to demonstrate its validity and accuracy of the proposed methodology contrasted with the deep belief network and deep neural network.
Collapse
|
5
|
Gudowska-Nowak E, Nowak MA, Chialvo DR, Ochab JK, Tarnowski W. From Synaptic Interactions to Collective Dynamics in Random Neuronal Networks Models: Critical Role of Eigenvectors and Transient Behavior. Neural Comput 2019; 32:395-423. [PMID: 31835001 DOI: 10.1162/neco_a_01253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The study of neuronal interactions is at the center of several big collaborative neuroscience projects (including the Human Connectome Project, the Blue Brain Project, and the Brainome) that attempt to obtain a detailed map of the entire brain. Under certain constraints, mathematical theory can advance predictions of the expected neural dynamics based solely on the statistical properties of the synaptic interaction matrix. This work explores the application of free random variables to the study of large synaptic interaction matrices. Besides recovering in a straightforward way known results on eigenspectra in types of models of neural networks proposed by Rajan and Abbott (2006), we extend them to heavy-tailed distributions of interactions. More important, we analytically derive the behavior of eigenvector overlaps, which determine the stability of the spectra. We observe that on imposing the neuronal excitation/inhibition balance, despite the eigenvalues remaining unchanged, their stability dramatically decreases due to the strong nonorthogonality of associated eigenvectors. This leads us to the conclusion that understanding the temporal evolution of asymmetric neural networks requires considering the entangled dynamics of both eigenvectors and eigenvalues, which might bear consequences for learning and memory processes in these models. Considering the success of free random variables theory in a wide variety of disciplines, we hope that the results presented here foster the additional application of these ideas in the area of brain sciences.
Collapse
Affiliation(s)
- E Gudowska-Nowak
- Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, PL 30-348 Kraków, Poland
| | - M A Nowak
- Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, PL 30-348 Kraków, Poland
| | - D R Chialvo
- Center for Complex Systems and Brain Sciences, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, 1650 Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Tecnológicas, 1650 Buenos Aires, Argentina
| | - J K Ochab
- Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, PL 30-348 Kraków, Poland
| | - W Tarnowski
- Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, PL 30-348 Kraków, Poland
| |
Collapse
|
6
|
Liu Y, Wang Z, Zhou D. UKF-based remote state estimation for discrete artificial neural networks with communication bandwidth constraints. Neural Netw 2018; 108:393-398. [DOI: 10.1016/j.neunet.2018.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/27/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
|
7
|
Kim SY, Lim W. Burst synchronization in a scale-free neuronal network with inhibitory spike-timing-dependent plasticity. Cogn Neurodyn 2018; 13:53-73. [PMID: 30728871 DOI: 10.1007/s11571-018-9505-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/19/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
We are concerned about burst synchronization (BS), related to neural information processes in health and disease, in the Barabási-Albert scale-free network (SFN) composed of inhibitory bursting Hindmarsh-Rose neurons. This inhibitory neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity (iSTDP). In previous works without considering iSTDP, BS was found to appear in a range of noise intensities for fixed synaptic inhibition strengths. In contrast, in our present work, we take into consideration iSTDP and investigate its effect on BS by varying the noise intensity. Our new main result is to find occurrence of a Matthew effect in inhibitory synaptic plasticity: good BS gets better via LTD, while bad BS get worse via LTP. This kind of Matthew effect in inhibitory synaptic plasticity is in contrast to that in excitatory synaptic plasticity where good (bad) synchronization gets better (worse) via LTP (LTD). We note that, due to inhibition, the roles of LTD and LTP in inhibitory synaptic plasticity are reversed in comparison with those in excitatory synaptic plasticity. Moreover, emergences of LTD and LTP of synaptic inhibition strengths are intensively investigated via a microscopic method based on the distributions of time delays between the pre- and the post-synaptic burst onset times. Finally, in the presence of iSTDP we investigate the effects of network architecture on BS by varying the symmetric attachment degree l ∗ and the asymmetry parameter Δ l in the SFN.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| |
Collapse
|
8
|
Kim SY, Lim W. Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network. Neural Netw 2018; 106:50-66. [PMID: 30025272 DOI: 10.1016/j.neunet.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
We consider the Watts-Strogatz small-world network (SWN) consisting of inhibitory fast spiking Izhikevich interneurons. This inhibitory neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity (iSTDP). In previous works without iSTDP, fast sparsely synchronized rhythms, associated with diverse cognitive functions, were found to appear in a range of large noise intensities for fixed strong synaptic inhibition strengths. Here, we investigate the effect of iSTDP on fast sparse synchronization (FSS) by varying the noise intensity D. We employ an asymmetric anti-Hebbian time window for the iSTDP update rule [which is in contrast to the Hebbian time window for the excitatory STDP (eSTDP)]. Depending on values of D, population-averaged values of saturated synaptic inhibition strengths are potentiated [long-term potentiation (LTP)] or depressed [long-term depression (LTD)] in comparison with the initial mean value, and dispersions from the mean values of LTP/LTD are much increased when compared with the initial dispersion, independently of D. In most cases of LTD where the effect of mean LTD is dominant in comparison with the effect of dispersion, good synchronization (with higher spiking measure) is found to get better via LTD, while bad synchronization (with lower spiking measure) is found to get worse via LTP. This kind of Matthew effect in inhibitory synaptic plasticity is in contrast to that in excitatory synaptic plasticity where good (bad) synchronization gets better (worse) via LTP (LTD). Emergences of LTD and LTP of synaptic inhibition strengths are intensively investigated via a microscopic method based on the distributions of time delays between the pre- and the post-synaptic spike times. Furthermore, we also investigate the effects of network architecture on FSS by changing the rewiring probability p of the SWN in the presence of iSTDP.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu 42411, Republic of Korea.
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu 42411, Republic of Korea.
| |
Collapse
|
9
|
Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 2018; 12:315-342. [PMID: 29765480 DOI: 10.1007/s11571-017-9470-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/29/2017] [Accepted: 12/26/2017] [Indexed: 01/02/2023] Open
Abstract
We consider an excitatory population of subthreshold Izhikevich neurons which cannot fire spontaneously without noise. As the coupling strength passes a threshold, individual neurons exhibit noise-induced burstings. This neuronal population has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP). However, STDP was not considered in previous works on stochastic burst synchronization (SBS) between noise-induced burstings of sub-threshold neurons. Here, we study the effect of additive STDP on SBS by varying the noise intensity D in the Barabási-Albert scale-free network (SFN). One of our main findings is a Matthew effect in synaptic plasticity which occurs due to a positive feedback process. Good burst synchronization (with higher bursting measure) gets better via long-term potentiation (LTP) of synaptic strengths, while bad burst synchronization (with lower bursting measure) gets worse via long-term depression (LTD). Consequently, a step-like rapid transition to SBS occurs by changing D, in contrast to a relatively smooth transition in the absence of STDP. We also investigate the effects of network architecture on SBS by varying the symmetric attachment degree [Formula: see text] and the asymmetry parameter [Formula: see text] in the SFN, and Matthew effects are also found to occur by varying [Formula: see text] and [Formula: see text]. Furthermore, emergences of LTP and LTD of synaptic strengths are investigated in details via our own microscopic methods based on both the distributions of time delays between the burst onset times of the pre- and the post-synaptic neurons and the pair-correlations between the pre- and the post-synaptic instantaneous individual burst rates (IIBRs). Finally, a multiplicative STDP case (depending on states) with soft bounds is also investigated in comparison with the additive STDP case (independent of states) with hard bounds. Due to the soft bounds, a Matthew effect with some quantitative differences is also found to occur for the case of multiplicative STDP.
Collapse
|