1
|
Acharya G, Davis KA, Nozari E. Predictive modeling of evoked intracranial EEG response to medial temporal lobe stimulation in patients with epilepsy. Commun Biol 2024; 7:1210. [PMID: 39342058 PMCID: PMC11438964 DOI: 10.1038/s42003-024-06859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Despite promising advancements, closed-loop neurostimulation for drug-resistant epilepsy (DRE) still relies on manual tuning and produces variable outcomes, while automated predictable algorithms remain an aspiration. As a fundamental step towards addressing this gap, here we study predictive dynamical models of human intracranial EEG (iEEG) response under parametrically rich neurostimulation. Using data from n = 13 DRE patients, we find that stimulation-triggered switched-linear models with ~300 ms of causal historical dependence best explain evoked iEEG dynamics. These models are highly consistent across different stimulation amplitudes and frequencies, allowing for learning a generalizable model from abundant STIM OFF and limited STIM ON data. Further, evoked iEEG in nearly all subjects exhibited a distance-dependent pattern, whereby stimulation directly impacts the actuation site and nearby regions (≲ 20 mm), affects medium-distance regions (20 ~ 100 mm) through network interactions, and hardly reaches more distal areas (≳ 100 mm). Peak network interaction occurs at 60 ~ 80 mm from the stimulation site. Due to their predictive accuracy and mechanistic interpretability, these models hold significant potential for model-based seizure forecasting and closed-loop neurostimulation design.
Collapse
Affiliation(s)
- Gagan Acharya
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | - Kathryn A Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Erfan Nozari
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA.
- Department of Mechanical Engineering, University of California, Riverside, CA, USA.
- Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
2
|
Wu Y, Hu K, Liu S. Computational models advance deep brain stimulation for Parkinson's disease. NETWORK (BRISTOL, ENGLAND) 2024:1-32. [PMID: 38923890 DOI: 10.1080/0954898x.2024.2361799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.
Collapse
Affiliation(s)
- Yongtong Wu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China
| | - Kejia Hu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenquan Liu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Quan Z, Li Y, Wang S. Multi-timescale neuromodulation strategy for closed-loop deep brain stimulation in Parkinson's disease. J Neural Eng 2024; 21:036006. [PMID: 38653252 DOI: 10.1088/1741-2552/ad4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Objective.Beta triggered closed-loop deep brain stimulation (DBS) shows great potential for improving the efficacy while reducing side effect for Parkinson's disease. However, there remain great challenges due to the dynamics and stochasticity of neural activities. In this study, we aimed to tune the amplitude of beta oscillations with different time scales taking into account influence of inherent variations in the basal ganglia-thalamus-cortical circuit.Approach. A dynamic basal ganglia-thalamus-cortical mean-field model was established to emulate the medication rhythm. Then, a dynamic target model was designed to embody the multi-timescale dynamic of beta power with milliseconds, seconds and minutes. Moreover, we proposed a closed-loop DBS strategy based on a proportional-integral-differential (PID) controller with the dynamic control target. In addition, the bounds of stimulation amplitude increments and different parameters of the dynamic target were considered to meet the clinical constraints. The performance of the proposed closed-loop strategy, including beta power modulation accuracy, mean stimulation amplitude, and stimulation variation were calculated to determine the PID parameters and evaluate neuromodulation performance in the computational dynamic mean-field model.Main results. The Results show that the dynamic basal ganglia-thalamus-cortical mean-field model simulated the medication rhythm with the fasted and the slowest rate. The dynamic control target reflected the temporal variation in beta power from milliseconds to minutes. With the proposed closed-loop strategy, the beta power tracked the dynamic target with a smoother stimulation sequence compared with closed-loop DBS with the constant target. Furthermore, the beta power could be modulated to track the control target under different long-term targets, modulation strengths, and bounds of the stimulation increment.Significance. This work provides a new method of closed-loop DBS for multi-timescale beta power modulation with clinical constraints.
Collapse
Affiliation(s)
- Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China
- Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, Ministry of Education, People's Republic of China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
- Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Shouyan Wang
- Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, Ministry of Education, People's Republic of China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China
- Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Chang S, Wang J, Zhu Y, Wei X, Deng B, Li H, Liu C. Nonlinear dynamical modeling of neural activity using volterra series with GA-enhanced particle swarm optimization algorithm. Cogn Neurodyn 2023; 17:467-476. [PMID: 37007203 PMCID: PMC10050660 DOI: 10.1007/s11571-022-09822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022] Open
Abstract
In order to improve the modeling performance of Volterra sequence for nonlinear neural activity, in this paper, a new optimization algorithm is proposed to identify Volterra sequence parameters. Algorithm combines the advantages of particle swarm optimization (PSO) and genetic algorithm (GA) improve the performance of the identification of nonlinear model parameters from rapidity and accuracy. In the modeling experiments of neural signal data generated by the neural computing model and clinical neural data set in this paper, the proposed algorithm shows its excellent potential in nonlinear neural activity modeling. Compared with PSO and GA, the algorithm can achieve less identification error, and better balance the convergence speed and identification error. Further, we explore the influence of algorithm parameters on identification efficiency, which provides possible guiding significance for parameter setting in practical application of the algorithm.
Collapse
Affiliation(s)
- Siyuan Chang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| | - Yulin Zhu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| | - Huiyan Li
- School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 30072 China
| |
Collapse
|
5
|
Song J, Lin H, Liu S. Basal ganglia network dynamics and function: Role of direct, indirect and hyper-direct pathways in action selection. NETWORK (BRISTOL, ENGLAND) 2023; 34:84-121. [PMID: 36856435 DOI: 10.1080/0954898x.2023.2173816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Basal ganglia (BG) are a widely recognized neural basis for action selection, but its decision-making mechanism is still a difficult problem for researchers. Therefore, we constructed a spiking neural network inspired by the BG anatomical data. Simulation experiments were based on the principle of dis-inhibition and our functional hypothesis within the BG: the direct pathway, the indirect pathway, and the hyper-direct pathway of the BG jointly implement the initiation execution and termination of motor programs. Firstly, we studied the dynamic process of action selection with the network, which contained intra-group competition and inter-group competition. Secondly, we focused on the effects of the stimulus intensity and the proportion of excitation and inhibition on the GPi/SNr. The results suggested that inhibition and excitation shape action selection. They also explained why the firing rate of GPi/SNr did not continue to increase in the action-selection experiment. Finally, we discussed the experimental results with the functional hypothesis. Uniquely, this paper summarized the decision-making neural mechanism of action selection based on the direct pathway, the indirect pathway, and the hyper-direct pathway within BG.
Collapse
Affiliation(s)
- Jian Song
- School of Mathematics, South China University of Technology, Guangzhou, China
| | - Hui Lin
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Shenquan Liu
- School of Mathematics, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Bahadori-Jahromi F, Salehi S, Madadi Asl M, Valizadeh A. Efficient suppression of parkinsonian beta oscillations in a closed-loop model of deep brain stimulation with amplitude modulation. Front Hum Neurosci 2023; 16:1013155. [PMID: 36776221 PMCID: PMC9908610 DOI: 10.3389/fnhum.2022.1013155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/09/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Parkinson's disease (PD) is a movement disorder characterized by the pathological beta band (15-30 Hz) neural oscillations within the basal ganglia (BG). It is shown that the suppression of abnormal beta oscillations is correlated with the improvement of PD motor symptoms, which is a goal of standard therapies including deep brain stimulation (DBS). To overcome the stimulation-induced side effects and inefficiencies of conventional DBS (cDBS) and to reduce the administered stimulation current, closed-loop adaptive DBS (aDBS) techniques were developed. In this method, the frequency and/or amplitude of stimulation are modulated based on various disease biomarkers. Methods Here, by computational modeling of a cortico-BG-thalamic network in normal and PD conditions, we show that closed-loop aDBS of the subthalamic nucleus (STN) with amplitude modulation leads to a more effective suppression of pathological beta oscillations within the parkinsonian BG. Results Our results show that beta band neural oscillations are restored to their normal range and the reliability of the response of the thalamic neurons to motor cortex commands is retained due to aDBS with amplitude modulation. Furthermore, notably less stimulation current is administered during aDBS compared with cDBS due to a closed-loop control of stimulation amplitude based on the STN local field potential (LFP) beta activity. Discussion Efficient models of closed-loop stimulation may contribute to the clinical development of optimized aDBS techniques designed to reduce potential stimulation-induced side effects of cDBS in PD patients while leading to a better therapeutic outcome.
Collapse
Affiliation(s)
| | - Sina Salehi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| |
Collapse
|
7
|
Yuan C, Li X. Fitting of TC model according to key parameters affecting Parkinson's state based on improved particle swarm optimization algorithm. Sci Rep 2022; 12:13938. [PMID: 35977977 PMCID: PMC9385711 DOI: 10.1038/s41598-022-18267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Biophysical models contain a large number of parameters, while the spiking characteristics of neurons are related to a few key parameters. For thalamic neurons, relay reliability is an important characteristic that affects Parkinson's state. This paper proposes a method to fit key parameters of the model based on the spiking characteristics of neurons, and improves the traditional particle swarm optimization algorithm. That is, a nonlinear concave function and a Logistic chaotic mapping are combined to adjust the inertia weight of particles to avoid the particle falling into a local optimum in the search process or appearing premature convergence. In this paper, three parameters that play an important role in Parkinson's state of the thalamic cell model are selected and fitted by the improved particle swarm optimization algorithm. Using the fitted parameters to reconstruct the neuron model can predict the spiking trajectories well, which verifies the effectiveness of the fitting method. By comparing the fitting results with other particle swarm optimization algorithms, it is shown that the proposed particle swarm optimization algorithm can better avoid local optima and converge to the optimal values quickly.
Collapse
Affiliation(s)
- Chunhua Yuan
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, 110159, China
| | - Xiangyu Li
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, 110159, China.
| |
Collapse
|
8
|
Rouhani E, Fathi Y. Robust multi-input multi-output adaptive fuzzy terminal sliding mode control of deep brain stimulation in Parkinson's disease: a simulation study. Sci Rep 2021; 11:21169. [PMID: 34707104 PMCID: PMC8551209 DOI: 10.1038/s41598-021-00365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/11/2021] [Indexed: 12/05/2022] Open
Abstract
Deep brain stimulation (DBS) has become an effective therapeutic solution for Parkinson’s disease (PD). Adaptive closed-loop DBS can be used to minimize stimulation-induced side effects by automatically determining the stimulation parameters based on the PD dynamics. In this paper, by modeling the interaction between the neurons in populations of the thalamic, the network-level modulation of thalamic is represented in a standard canonical form as a multi-input multi-output (MIMO) nonlinear first-order system with uncertainty and external disturbances. A class of fast and robust MIMO adaptive fuzzy terminal sliding mode control (AFTSMC) has been presented for control of membrane potential of thalamic neuron populations through continuous adaptive DBS current applied to the thalamus. A fuzzy logic system (FLS) is used to estimate the unknown nonlinear dynamics of the model, and the weights of FLS are adjusted online to guarantee the convergence of FLS parameters to optimal values. The simulation results show that the proposed AFTSMC not only significantly produces lower tracking errors in comparison with the classical adaptive fuzzy sliding mode control (AFSMC), but also makes more robust and reliable outputs. The results suggest that the proposed AFTSMC provides a more robust and smooth control input which is highly desirable for hardware design and implementation.
Collapse
Affiliation(s)
- Ehsan Rouhani
- Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - Yaser Fathi
- Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
9
|
Regulatory Mechanism for Absence Seizures in Bidirectional Interactive Thalamocortical Model via Different Targeted Therapy Schemes. Neural Plast 2021; 2021:1198072. [PMID: 34567107 PMCID: PMC8463191 DOI: 10.1155/2021/1198072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/08/2021] [Accepted: 08/30/2021] [Indexed: 12/01/2022] Open
Abstract
Recent clinical practice has found that the spike-wave discharge (SWD) scopes of absence seizures change from small cortical region to large thalamocortical networks, which has also been proved by theoretical simulation. The best biophysics explanation is that there are interactions between coupled cortico-thalamic and thalamocortical circuits. To agree with experiment results and describe the phenomena better, we constructed a coupled thalamocortical model with bidirectional channel (CTMBC) to account for the causes of absence seizures which are connected by the principle of two-way communication of neural pathways. By adjusting the coupling strength of bidirectional pathways, the spike-wave discharges are reproduced. Regulatory mechanism for absence seizures is further applied to CTMBC via four different targeted therapy schemes, such as deep brain stimulation (DBS), charge-balanced biphasic pulse (CBBP), coordinated reset stimulation (CRS) 1 : 0, and (CRS) 3 : 2. The new CTMBC model shows that neurodiversity in bidirectional interactive channel could supply theory reference for the bidirectional communication mode of thalamocortical networks and the hypothesis validation of pathogenesis.
Collapse
|
10
|
Chang S, Wang J, Liu C, Yi G, Lu M, Che Y, Wei X. A Data Driven Experimental System for Individualized Brain Stimulation Design and Validation. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1848-1857. [PMID: 34478377 DOI: 10.1109/tnsre.2021.3110275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deep brain stimulation (DBS) is an effective clinical treatment for epilepsy. However, the individualized setting and adaptive adjustment of DBS parameters are still facing great challenges. This paper investigates a data-driven hardware-in-the-loop (HIL) experimental system for closed-loop brain stimulation system individualized design and validation. The unscented Kalman filter (UKF) is utilized to estimate critical parameters of neural mass model (NMM) from the electroencephalogram recordings to reconstruct individual neural activity. Based on the reconstructed NMM, we build a digital signal processor (DSP) based virtual brain platform with real time scale and biological signal level scale. Then, the corresponding hardware parts of signal amplification detection and closed-loop controller are designed to form the HIL experimental system. Based on the designed experimental system, the proportional-integral controller for different individual NMM is designed and validated, which proves the effectiveness of the experimental system. This experimental system provides a platform to explore neural activity under brain stimulation and the effects of various closed-loop stimulation paradigms.
Collapse
|
11
|
Ahmadipour M, Barkhordari-Yazdi M, Seydnejad SR. Subspace-based predictive control of Parkinson's disease: A model-based study. Neural Netw 2021; 142:680-689. [PMID: 34403908 DOI: 10.1016/j.neunet.2021.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 06/19/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Deep brain stimulation (DBS) of the Basal Ganglia (BG) is an effective treatment to suppress the symptoms of Parkinson's disease (PD). Using a closed-loop scheme in DBS can not only improve its therapeutic effects but it can also reduce its energy consumption and possible side effects. In this paper, a predictive closed loop control strategy is employed to suppress the PD in real-time. A linear multi-input multi-output (MIMO) state-delayed system is considered as a simplified model of the BG neuronal network relating the stimulation signals as inputs to the beta power of local field potentials as PD biomarkers. The effect of time delay in different areas of the BG is incorporated into this model and a real-time subspace-based identification is implemented to continuously model the state of the BG neuronal network and drive the predictive control strategy. Simulation results show that the proposed MIMO subspace based predictive controller can suppress PD symptoms more effectively and with less power consumption compared to the conventional open-loop DBS and a recently proposed single-input single-output closed loop controller.
Collapse
Affiliation(s)
- Mahboubeh Ahmadipour
- Department of Electrical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mojtaba Barkhordari-Yazdi
- Department of Electrical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Saeid R Seydnejad
- Department of Electrical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
12
|
Chang S, Wei X, Su F, Liu C, Yi G, Wang J, Han C, Che Y. Model Predictive Control for Seizure Suppression Based on Nonlinear Auto-Regressive Moving-Average Volterra Model. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2173-2183. [PMID: 32763855 DOI: 10.1109/tnsre.2020.3014927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article investigates a closed-loop brain stimulation method based on model predictive control strategy to suppress epileptic seizures. A neural mass model (NMM), exhibiting the normal and various epileptic seizures by changing physiologically meaningful parameters, is used as a black-box model of the brain. Based on system identification, an auto-regressive moving-average Volterra model is established to reveal the relationship between stimulation and neuronal responses. Then, the model predictive control strategy is implemented based the Volterra model, which can generate an optimal stimulation waveform to eliminate epileptiform waves. The computational simulation results indicate the proposed closed-loop control strategy can optimize the stimulation waveform without particular knowledge of the physiological properties of the system. The robustness of the proposed control strategy to system disturbances makes it more appropriate for future clinical application.
Collapse
|
13
|
Yu Y, Wang X, Wang Q, Wang Q. A review of computational modeling and deep brain stimulation: applications to Parkinson's disease. APPLIED MATHEMATICS AND MECHANICS 2020; 41:1747-1768. [PMID: 33223591 PMCID: PMC7672165 DOI: 10.1007/s10483-020-2689-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/12/2020] [Indexed: 05/11/2023]
Abstract
Biophysical computational models are complementary to experiments and theories, providing powerful tools for the study of neurological diseases. The focus of this review is the dynamic modeling and control strategies of Parkinson's disease (PD). In previous studies, the development of parkinsonian network dynamics modeling has made great progress. Modeling mainly focuses on the cortex-thalamus-basal ganglia (CTBG) circuit and its sub-circuits, which helps to explore the dynamic behavior of the parkinsonian network, such as synchronization. Deep brain stimulation (DBS) is an effective strategy for the treatment of PD. At present, many studies are based on the side effects of the DBS. However, the translation from modeling results to clinical disease mitigation therapy still faces huge challenges. Here, we introduce the progress of DBS improvement. Its specific purpose is to develop novel DBS treatment methods, optimize the treatment effect of DBS for each patient, and focus on the study in closed-loop DBS. Our goal is to review the inspiration and insights gained by combining the system theory with these computational models to analyze neurodynamics and optimize DBS treatment.
Collapse
Affiliation(s)
- Ying Yu
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Xiaomin Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Qishao Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| |
Collapse
|