• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643668)   Today's Articles (13)   Subscriber (50599)
For: Zhao H, Lai Z, Chen Y. Global-and-local-structure-based neural network for fault detection. Neural Netw 2019;118:43-53. [DOI: 10.1016/j.neunet.2019.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/13/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022]
Number Cited by Other Article(s)
1
Ren X, Sun D, Lv J, Gao B, Jia S, Bian X, Zhao K, Li J, Liu P, Li J. Chromosome-level genome of the long-tailed marine-living ornate spiny lobster, Panulirus ornatus. Sci Data 2024;11:662. [PMID: 38909031 PMCID: PMC11193758 DOI: 10.1038/s41597-024-03512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]  Open
2
Peng C, FanChao M. Fault Detection of Urban Wastewater Treatment Process Based on Combination of Deep Information and Transformer Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:8124-8133. [PMID: 37015564 DOI: 10.1109/tnnls.2022.3224804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
3
Li Q, Wang Y, Dong J, Zhang C, Peng K. Multi-node knowledge graph assisted distributed fault detection for large-scale industrial processes based on graph attention network and bidirectional LSTMs. Neural Netw 2024;173:106210. [PMID: 38417353 DOI: 10.1016/j.neunet.2024.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
4
Song P, Zhao C, Huang B. MPGE and RootRank: A sufficient root cause characterization and quantification framework for industrial process faults. Neural Netw 2023;161:397-417. [PMID: 36780862 DOI: 10.1016/j.neunet.2023.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
5
Gravanis G, Dragogias I, Papakiriakos K, Ziogou C, Diamantaras K. Fault detection and diagnosis for non-linear processes empowered by dynamic neural networks. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
6
Cui P, Wang X, Yang Y. Nonparametric manifold learning approach for improved process monitoring. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
7
Hu Z, Peng J, Zhao H. Uncorrelated discriminant graph embedding for fault classification. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
8
Yang D, Karimi HR, Sun K. Residual wide-kernel deep convolutional auto-encoder for intelligent rotating machinery fault diagnosis with limited samples. Neural Netw 2021;141:133-144. [PMID: 33901878 DOI: 10.1016/j.neunet.2021.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
9
Wang K, Yuan X, Chen J, Wang Y. Supervised and semi-supervised probabilistic learning with deep neural networks for concurrent process-quality monitoring. Neural Netw 2020;136:54-62. [PMID: 33445005 DOI: 10.1016/j.neunet.2020.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/20/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
10
Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks. Neural Netw 2020;129:313-322. [PMID: 32585512 DOI: 10.1016/j.neunet.2020.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 11/22/2022]
11
Dong J, Zhang C, Peng K. A novel industrial process monitoring method based on improved local tangent space alignment algorithm. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.04.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
12
Temporal-Spatial Neighborhood Enhanced Sparse Autoencoder for Nonlinear Dynamic Process Monitoring. Processes (Basel) 2020. [DOI: 10.3390/pr8091079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
13
Li J, Yan X. Process monitoring using principal component analysis and stacked autoencoder for linear and nonlinear coexisting industrial processes. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
14
Yan S, Yan X. Quality-Driven Autoencoder for Nonlinear Quality-Related and Process-Related Fault Detection Based on Least-Squares Regularization and Enhanced Statistics. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
15
An artificial neural network approach to recognise kinetic models from experimental data. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2020.106759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA