1
|
Zheng K, Yu S, Chen B. CI-GNN: A Granger causality-inspired graph neural network for interpretable brain network-based psychiatric diagnosis. Neural Netw 2024; 172:106147. [PMID: 38306785 DOI: 10.1016/j.neunet.2024.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
There is a recent trend to leverage the power of graph neural networks (GNNs) for brain-network based psychiatric diagnosis, which, in turn, also motivates an urgent need for psychiatrists to fully understand the decision behavior of the used GNNs. However, most of the existing GNN explainers are either post-hoc in which another interpretive model needs to be created to explain a well-trained GNN, or do not consider the causal relationship between the extracted explanation and the decision, such that the explanation itself contains spurious correlations and suffers from weak faithfulness. In this work, we propose a granger causality-inspired graph neural network (CI-GNN), a built-in interpretable model that is able to identify the most influential subgraph (i.e., functional connectivity within brain regions) that is causally related to the decision (e.g., major depressive disorder patients or healthy controls), without the training of an auxillary interpretive network. CI-GNN learns disentangled subgraph-level representations α and β that encode, respectively, the causal and non-causal aspects of original graph under a graph variational autoencoder framework, regularized by a conditional mutual information (CMI) constraint. We theoretically justify the validity of the CMI regulation in capturing the causal relationship. We also empirically evaluate the performance of CI-GNN against three baseline GNNs and four state-of-the-art GNN explainers on synthetic data and three large-scale brain disease datasets. We observe that CI-GNN achieves the best performance in a wide range of metrics and provides more reliable and concise explanations which have clinical evidence. The source code and implementation details of CI-GNN are freely available at GitHub repository (https://github.com/ZKZ-Brain/CI-GNN/).
Collapse
Affiliation(s)
- Kaizhong Zheng
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China.
| | - Shujian Yu
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Machine Learning Group, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Badong Chen
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Tuladhar A, Moore JA, Ismail Z, Forkert ND. Modeling Neurodegeneration in silico With Deep Learning. Front Neuroinform 2021; 15:748370. [PMID: 34867256 PMCID: PMC8640525 DOI: 10.3389/fninf.2021.748370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Deep neural networks, inspired by information processing in the brain, can achieve human-like performance for various tasks. However, research efforts to use these networks as models of the brain have primarily focused on modeling healthy brain function so far. In this work, we propose a paradigm for modeling neural diseases in silico with deep learning and demonstrate its use in modeling posterior cortical atrophy (PCA), an atypical form of Alzheimer’s disease affecting the visual cortex. We simulated PCA in deep convolutional neural networks (DCNNs) trained for visual object recognition by randomly injuring connections between artificial neurons. Results showed that injured networks progressively lost their object recognition capability. Simulated PCA impacted learned representations hierarchically, as networks lost object-level representations before category-level representations. Incorporating this paradigm in computational neuroscience will be essential for developing in silico models of the brain and neurological diseases. The paradigm can be expanded to incorporate elements of neural plasticity and to other cognitive domains such as motor control, auditory cognition, language processing, and decision making.
Collapse
Affiliation(s)
- Anup Tuladhar
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jasmine A Moore
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Program, University of Calgary, Calgary, AB, Canada
| | - Zahinoor Ismail
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
The 2-D Cluster Variation Method: Topography Illustrations and Their Enthalpy Parameter Correlations. ENTROPY 2021; 23:e23030319. [PMID: 33800360 PMCID: PMC7999889 DOI: 10.3390/e23030319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023]
Abstract
One of the biggest challenges in characterizing 2-D image topographies is finding a low-dimensional parameter set that can succinctly describe, not so much image patterns themselves, but the nature of these patterns. The 2-D cluster variation method (CVM), introduced by Kikuchi in 1951, can characterize very local image pattern distributions using configuration variables, identifying nearest-neighbor, next-nearest-neighbor, and triplet configurations. Using the 2-D CVM, we can characterize 2-D topographies using just two parameters; the activation enthalpy (ε0) and the interaction enthalpy (ε1). Two different initial topographies (“scale-free-like” and “extreme rich club-like”) were each computationally brought to a CVM free energy minimum, for the case where the activation enthalpy was zero and different values were used for the interaction enthalpy. The results are: (1) the computational configuration variable results differ significantly from the analytically-predicted values well before ε1 approaches the known divergence as ε1→0.881, (2) the range of potentially useful parameter values, favoring clustering of like-with-like units, is limited to the region where ε0<3 and ε1<0.25, and (3) the topographies in the systems that are brought to a free energy minimum show interesting visual features, such as extended “spider legs” connecting previously unconnected “islands,” and as well as evolution of “peninsulas” in what were previously solid masses.
Collapse
|