Multi-periodicity of switched neural networks with time delays and periodic external inputs under stochastic disturbances.
Neural Netw 2021;
141:107-119. [PMID:
33887601 DOI:
10.1016/j.neunet.2021.03.039]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022]
Abstract
This paper presents new theoretical results on the multi-periodicity of recurrent neural networks with time delays evoked by periodic inputs under stochastic disturbances and state-dependent switching. Based on the geometric properties of activation function and switching threshold, the neuronal state space is partitioned into 5n regions in which 3n ones are shown to be positively invariant with probability one. Furthermore, by using Itô's formula, Lyapunov functional method, and the contraction mapping theorem, two criteria are proposed to ascertain the existence and mean-square exponential stability of a periodic orbit in every positive invariant set. As a result, the number of mean-square exponentially stable periodic orbits increases to 3n from 2n in a neural network without switching. Two illustrative examples are elaborated to substantiate the efficacy and characteristics of the theoretical results.
Collapse