1
|
Caruso V, Raia A, Rigoli L. Wolfram Syndrome 1: A Neuropsychiatric Perspective on a Rare Disease. Genes (Basel) 2024; 15:984. [PMID: 39202345 PMCID: PMC11353439 DOI: 10.3390/genes15080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Wolfram syndrome 1 (WS1) is an uncommon autosomal recessive neurological disorder that is characterized by diabetes insipidus, early-onset non-autoimmune diabetes mellitus, optic atrophy, and deafness (DIDMOAD). Other clinical manifestations are neuropsychiatric symptoms, urinary tract alterations, and endocrinological disorders. The rapid clinical course of WS1 results in death by the age of 30. Severe brain atrophy leads to central respiratory failure, which is the main cause of death in WS1 patients. Mutations in the WFS1 gene, located on chromosome 4p16, account for approximately 90% of WS1 cases. The gene produces wolframin, a transmembrane glycoprotein widely distributed and highly expressed in retinal, neural, and muscular tissues. Wolframin plays a crucial role in the regulation of apoptosis, insulin signaling, and ER calcium homeostasis, as well as the ER stress response. WS1 has been designated as a neurodegenerative and neurodevelopmental disorder due to the numerous abnormalities in the ER stress-mediated system. WS1 is a devastating neurodegenerative disease that affects patients and their families. Early diagnosis and recognition of the initial clinical signs may slow the disease's progression and improve symptomatology. Moreover, genetic counseling should be provided to the patient's relatives to extend multidisciplinary care to their first-degree family members. Regrettably, there are currently no specific drugs for the therapy of this fatal disease. A better understanding of the etiology of WS1 will make possible the development of new therapeutic approaches that may enhance the life expectancy of patients. This review will examine the pathogenetic mechanisms, development, and progression of neuropsychiatric symptoms commonly associated with WS1. A thorough understanding of WS1's neurophysiopathology is critical for achieving the goal of improving patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Valerio Caruso
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (A.U.O.P.), 56126 Pisa, Italy;
| | - Accursio Raia
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (A.U.O.P.), 56126 Pisa, Italy;
| | - Luciana Rigoli
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy
| |
Collapse
|
2
|
Hao H, Song L, Zhang L. Wolfram syndrome 1 regulates sleep in dopamine receptor neurons by modulating calcium homeostasis. PLoS Genet 2023; 19:e1010827. [PMID: 37399203 DOI: 10.1371/journal.pgen.1010827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
Sleep disruptions are quite common in psychological disorders, but the underlying mechanism remains obscure. Wolfram syndrome 1 (WS1) is an autosomal recessive disease mainly characterized by diabetes insipidus/mellitus, neurodegeneration and psychological disorders. It is caused by loss-of function mutations of the WOLFRAM SYNDROME 1 (WFS1) gene, which encodes an endoplasmic reticulum (ER)-resident transmembrane protein. Heterozygous mutation carriers do not develop WS1 but exhibit 26-fold higher risk of having psychological disorders. Since WS1 patients display sleep abnormalities, we aimed to explore the role of WFS1 in sleep regulation so as to help elucidate the cause of sleep disruptions in psychological disorders. We found in Drosophila that knocking down wfs1 in all neurons and wfs1 mutation lead to reduced sleep and dampened circadian rhythm. These phenotypes are mainly caused by lack of wfs1 in dopamine 2-like receptor (Dop2R) neurons which act to promote wake. Consistently, the influence of wfs1 on sleep is blocked or partially rescued by inhibiting or knocking down the rate-limiting enzyme of dopamine synthesis, suggesting that wfs1 modulates sleep via dopaminergic signaling. Knocking down wfs1 alters the excitability of Dop2R neurons, while genetic interactions reveal that lack of wfs1 reduces sleep via perturbation of ER-mediated calcium homeostasis. Taken together, we propose a role for wfs1 in modulating the activities of Dop2R neurons by impinging on intracellular calcium homeostasis, and this in turn influences sleep. These findings provide a potential mechanistic insight for pathogenesis of diseases associated with WFS1 mutations.
Collapse
Affiliation(s)
- Huanfeng Hao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Song
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, Hubei, China
| |
Collapse
|
3
|
Chen S, Acosta D, Li L, Liang J, Chang Y, Wang C, Fitzgerald J, Morrison C, Goulbourne CN, Nakano Y, Villegas NCH, Venkataraman L, Brown C, Serrano GE, Bell E, Wemlinger T, Wu M, Kokiko-Cochran ON, Popovich P, Flowers XE, Honig LS, Vonsattel JP, Scharre DW, Beach TG, Ma Q, Kuret J, Kõks S, Urano F, Duff KE, Fu H. Wolframin is a novel regulator of tau pathology and neurodegeneration. Acta Neuropathol 2022; 143:547-569. [PMID: 35389045 DOI: 10.1007/s00401-022-02417-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022]
Abstract
Selective neuronal vulnerability to protein aggregation is found in many neurodegenerative diseases including Alzheimer's disease (AD). Understanding the molecular origins of this selective vulnerability is, therefore, of fundamental importance. Tau protein aggregates have been found in Wolframin (WFS1)-expressing excitatory neurons in the entorhinal cortex, one of the earliest affected regions in AD. The role of WFS1 in Tauopathies and its levels in tau pathology-associated neurodegeneration, however, is largely unknown. Here we report that WFS1 deficiency is associated with increased tau pathology and neurodegeneration, whereas overexpression of WFS1 reduces those changes. We also find that WFS1 interacts with tau protein and controls the susceptibility to tau pathology. Furthermore, chronic ER stress and autophagy-lysosome pathway (ALP)-associated genes are enriched in WFS1-high excitatory neurons in human AD at early Braak stages. The protein levels of ER stress and autophagy-lysosome pathway (ALP)-associated proteins are changed in tau transgenic mice with WFS1 deficiency, while overexpression of WFS1 reverses those changes. This work demonstrates a possible role for WFS1 in the regulation of tau pathology and neurodegeneration via chronic ER stress and the downstream ALP. Our findings provide insights into mechanisms that underpin selective neuronal vulnerability, and for developing new therapeutics to protect vulnerable neurons in AD.
Collapse
|
4
|
Donohue JD, Amidon RF, Murphy TR, Wong AJ, Liu ED, Saab L, King AJ, Pae H, Ajayi MT, Anderson GR. Parahippocampal latrophilin-2 (ADGRL2) expression controls topographical presubiculum to entorhinal cortex circuit connectivity. Cell Rep 2021; 37:110031. [PMID: 34818557 DOI: 10.1016/j.celrep.2021.110031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/15/2021] [Accepted: 10/29/2021] [Indexed: 01/29/2023] Open
Abstract
Brain circuits are comprised of distinct interconnected neurons that are assembled by synaptic recognition molecules presented by defined pre- and post-synaptic neurons. This cell-cell recognition process is mediated by varying cellular adhesion molecules, including the latrophilin family of adhesion G-protein-coupled receptors. Focusing on parahippocampal circuitry, we find that latrophilin-2 (Lphn2; gene symbol ADGRL2) is specifically enriched in interconnected subregions of the medial entorhinal cortex (MEC), presubiculum (PrS), and parasubiculum (PaS). Retrograde viral tracing from the Lphn2-enriched region of the MEC reveals unique topographical patterning of inputs arising from the PrS and PaS that mirrors Lphn2 expression. Using a Lphn2 conditional knockout mouse model, we find that deletion of MEC Lphn2 expression selectively impairs retrograde viral labeling of inputs arising from the ipsilateral PrS. Combined with analysis of Lphn2 expression within the MEC, this study reveals Lphn2 to be selectively expressed by defined cell types and essential for MEC-PrS circuit connectivity.
Collapse
Affiliation(s)
- Jordan D Donohue
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Ryan F Amidon
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Thomas R Murphy
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Anthony J Wong
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Elizabeth D Liu
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Lisette Saab
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Alexander J King
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Haneal Pae
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Moyinoluwa T Ajayi
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Garret R Anderson
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
5
|
Yokose J, Marks WD, Yamamoto N, Ogawa SK, Kitamura T. Entorhinal cortical Island cells regulate temporal association learning with long trace period. ACTA ACUST UNITED AC 2021; 28:319-328. [PMID: 34400533 PMCID: PMC8372565 DOI: 10.1101/lm.052589.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
Temporal association learning (TAL) allows for the linkage of distinct, nonsynchronous events across a period of time. This function is driven by neural interactions in the entorhinal cortical-hippocampal network, especially the neural input from the pyramidal cells in layer III of medial entorhinal cortex (MECIII) to hippocampal CA1 is crucial for TAL. Successful TAL depends on the strength of event stimuli and the duration of the temporal gap between events. Whereas it has been demonstrated that the neural input from pyramidal cells in layer II of MEC, referred to as Island cells, to inhibitory neurons in dorsal hippocampal CA1 controls TAL when the strength of event stimuli is weak, it remains unknown whether Island cells regulate TAL with long trace periods as well. To understand the role of Island cells in regulating the duration of the learnable trace period in TAL, we used Pavlovian trace fear conditioning (TFC) with a 60-sec long trace period (long trace fear conditioning [L-TFC]) coupled with optogenetic and chemogenetic neural activity manipulations as well as cell type-specific neural ablation. We found that ablation of Island cells in MECII partially increases L-TFC performance. Chemogenetic manipulation of Island cells causes differential effectiveness in Island cell activity and leads to a circuit imbalance that disrupts L-TFC. However, optogenetic terminal inhibition of Island cell input to dorsal hippocampal CA1 during the temporal association period allows for long trace intervals to be learned in TFC. These results demonstrate that Island cells have a critical role in regulating the duration of time bridgeable between associated events in TAL.
Collapse
Affiliation(s)
| | | | | | | | - Takashi Kitamura
- Department of Psychiatry.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
6
|
Kurimoto J, Takagi H, Miyata T, Hodai Y, Kawaguchi Y, Hagiwara D, Suga H, Kobayashi T, Sugiyama M, Onoue T, Ito Y, Iwama S, Banno R, Tanabe K, Tanizawa Y, Arima H. Deficiency of WFS1 leads to the impairment of AVP secretion under dehydration in male mice. Pituitary 2021; 24:582-588. [PMID: 33666833 DOI: 10.1007/s11102-021-01135-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Wolfram syndrome (WS) is mainly caused by mutations in the WFS1 gene and characterized by diabetes mellitus, optic atrophy, hearing loss, and central diabetes insipidus (CDI). WFS1 is an endoplasmic reticulum (ER)-resident transmembrane protein, and Wfs1 knockout (Wfs1-/-) mice, which have been used as a mouse model for WS, reportedly manifested impairment of glucose tolerance due to pancreatic β-cell loss. In the present study, we examined water balance, arginine vasopressin (AVP) secretion, and ER stress in AVP neurons of the hypothalamus in Wfs1-/- mice. There were no differences in urine volumes between Wfs1-/- and wild-type mice with free access to water. Conversely, when mice were subjected to intermittent water deprivation (WD) for 20 weeks, during which water was unavailable for 2 days a week, urine volumes were larger in Wfs1-/- mice, accompanied by lower urine AVP concentrations and urine osmolality, compared to wild-type mice. The mRNA expression of immunoglobulin heavy chain binding protein, a marker of ER stress, was significantly increased in the supraoptic nucleus and paraventricular nuclei in Wfs1-/- mice compared to wild-type mice after WD. Our results thus showed that Wfs1 knockout leads to a decrease in AVP secretion during dehydration, which could explain in part the mechanisms by which Wfs1 mutations cause CDI in humans.
Collapse
Affiliation(s)
- Junki Kurimoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan
| | - Katsuya Tanabe
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
7
|
Li L, Venkataraman L, Chen S, Fu H. Function of WFS1 and WFS2 in the Central Nervous System: Implications for Wolfram Syndrome and Alzheimer's disease. Neurosci Biobehav Rev 2020; 118:775-783. [PMID: 32949681 DOI: 10.1016/j.neubiorev.2020.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
L.P. Li, L. Venkataraman, S. Chen, and H.J. Fu. Function of WFS1 and WFS2 in the Central Nervous System: Implications for Wolfram Syndrome and Alzheimer's Disease. NEUROSCI BIOBEHAV REVXXX-XXX,2020.-Wolfram syndrome (WS) is a rare monogenetic spectrum disorder characterized by insulin-dependent juvenile-onset diabetes mellitus, diabetes insipidus, optic nerve atrophy, hearing loss, progressive neurodegeneration, and a wide spectrum of psychiatric manifestations. Most WS patients belong to Wolfram Syndrome type 1 (WS1) caused by mutations in the Wolfram Syndrome 1 (WFS1/Wolframin) gene, while a small fraction of patients belongs to Wolfram Syndrome type 2 (WS2) caused by pathogenic variants in the CDGSH Iron Sulfur Domain 2 (CISD2/WFS2) gene. Although currently there is no treatment for this life-threatening disease, the molecular mechanisms underlying the pathogenesis of WS have been proposed. Interestingly, Alzheimer's disease (AD), an age-dependent neurodegenerative disease, shares some common mechanisms with WS. In this review, we focus on the function of WFS1 and WFS2 in the central nervous system as well as their implications in WS and AD. We also propose three future directions for elucidating the role of WFS1 and WFS2 in WS and AD.
Collapse
Affiliation(s)
- Liangping Li
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA
| | - Lalitha Venkataraman
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA
| | - Shuo Chen
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA
| | - Hongjun Fu
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Samara A, Rahn R, Neyman O, Park KY, Samara A, Marshall B, Dougherty J, Hershey T. Developmental hypomyelination in Wolfram syndrome: new insights from neuroimaging and gene expression analyses. Orphanet J Rare Dis 2019; 14:279. [PMID: 31796109 PMCID: PMC6889680 DOI: 10.1186/s13023-019-1260-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Wolfram syndrome is a rare multisystem disorder caused by mutations in WFS1 or CISD2 genes leading to brain structural abnormalities and neurological symptoms. These abnormalities appear in early stages of the disease. The pathogenesis of Wolfram syndrome involves abnormalities in the endoplasmic reticulum (ER) and mitochondrial dynamics, which are common features in several other neurodegenerative disorders. Mutations in WFS1 are responsible for the majority of Wolfram syndrome cases. WFS1 encodes for an endoplasmic reticulum (ER) protein, wolframin. It is proposed that wolframin deficiency triggers the unfolded protein response (UPR) pathway resulting in an increased ER stress-mediated neuronal loss. Recent neuroimaging studies showed marked alteration in early brain development, primarily characterized by abnormal white matter myelination. Interestingly, ER stress and the UPR pathway are implicated in the pathogenesis of some inherited myelin disorders like Pelizaeus-Merzbacher disease, and Vanishing White Matter disease. In addition, exploratory gene-expression network-based analyses suggest that WFS1 expression occurs preferentially in oligodendrocytes during early brain development. Therefore, we propose that Wolfram syndrome could belong to a category of neurodevelopmental disorders characterized by ER stress-mediated myelination impairment. Further studies of myelination and oligodendrocyte function in Wolfram syndrome could provide new insights into the underlying mechanisms of the Wolfram syndrome-associated brain changes and identify potential connections between neurodevelopmental disorders and neurodegeneration.
Collapse
Affiliation(s)
- Amjad Samara
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Rachel Rahn
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Genetics, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Olga Neyman
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Ki Yun Park
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Ahmad Samara
- Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Bess Marshall
- Department of Pediatrics, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Joseph Dougherty
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA.,Department of Genetics, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA. .,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Sobhani M, Amin Tabatabaiefar M, Ghafouri-Fard S, Rajab A, Mozafarpour S, Nasrniya S, Kajbafzadeh AM, Noori-Daloii MR. Clinical and molecular assessment of 13 Iranian families with Wolfram syndrome. Endocrine 2019; 66:185-191. [PMID: 31313226 DOI: 10.1007/s12020-019-02004-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/04/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE Wolfram syndrome (WS) is a rare genetic disorder described by a pattern of clinical manifestations such as diabetes mellitus, diabetes insipidus, optic nerve atrophy, sensorineural hearing loss, urinary tract abnormalities, and psychiatric disorders. WFS1 and WFS2 loci are the main genetic loci associated with this disorder. METHODS In the current study, we investigated associations between these loci and WS via STR markers and homozygosity mapping in 13 Iranian families with WS. All families were linked to WFS1 locus. RESULTS Mutation analysis revealed four novel mutations (Q215X, E89X, S168Del, and E391Sfs*51) in the assessed families. Bioinformatics tools confirmed the pathogenicity of the novel mutations. Other identified mutations were previously reported in other populations for their pathogenicity. CONCLUSIONS The current study adds to the mutation repository of WS and shows a panel of mutations in Iranian population. Such panel would facilitate genetic counseling and prenatal diagnosis in families with WS cases.
Collapse
Affiliation(s)
- Maryam Sobhani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sarah Mozafarpour
- Department of Urology, Massachusetts General Hospital Harvard Medical School, Boston, MA, 02114, USA
| | - Samaneh Nasrniya
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Reza Noori-Daloii
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Poursina Ave, 16 Azar St. Keshavarz BLVD, Tehran, 1417613151, Iran.
| |
Collapse
|
10
|
Wroblewski G, Islam MN, Yanai A, Jahan MR, Masumoto KH, Shinoda K. Distribution of HAP1-immunoreactive Cells in the Retrosplenial-retrohippocampal Area of Adult Rat Brain and Its Application to a Refined Neuroanatomical Understanding of the Region. Neuroscience 2018; 394:109-126. [PMID: 30367943 DOI: 10.1016/j.neuroscience.2018.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neural interactor of huntingtin in Huntington's disease and interacts with gene products in a number of other neurodegenerative diseases. In normal brains, HAP1 is expressed abundantly in the hypothalamus and limbic-associated regions. These areas tend to be spared from neurodegeneration while those with little HAP1 are frequently neurodegenerative targets, suggesting its role as a protective factor against apoptosis. In light of the relationship between neurodegenerative diseases and deterioration of higher nervous activity, it is important to definitively clarify HAP1 expression in a cognitively important brain region, the retrosplenial-retrohippocampal area. Here, HAP1 expression was evaluated immunohistochemically over the retrosplenial cortex, the subicular complex, and the entorhinal and perirhinal cortices. HAP1-immunoreactive (ir) cells were classified into five discrete groups: (1) a distinct retrosplenial cell cluster exclusive to the superficial layers of the granular cortex, (2) a conspicuous, thin line of cells in layers IV/V of the "subiculum-backing cortex," (3) a group of highly immunoreactive cells associated with the medial entorhinal-subicular corner, (4) pericallosal cells just below layer VI and adjacent to the white matter, and (5) other sporadic, widely-disseminated HAP1-immunoreactive cells. HAP1 was found to be the first marker for the complex subiculum-backing cortex and a precise marker for several subfields in the retrosplenial-retrohippocampal area, verified through comparative staining with other neurochemicals. HAP1 may play an important role in protecting these cortical structures and functions for higher nervous activity by increasing the threshold to neurodegeneration and decreasing vulnerability to stress or aging.
Collapse
Affiliation(s)
- Greggory Wroblewski
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Center for Language Education, Ritsumeikan Asia Pacific University, 1-1 Jumonjibaru, Beppu, Oita 874-8577, Japan
| | - Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koh-Hei Masumoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| |
Collapse
|
11
|
Genetic and clinical aspects of Wolfram syndrome 1, a severe neurodegenerative disease. Pediatr Res 2018; 83:921-929. [PMID: 29774890 DOI: 10.1038/pr.2018.17] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022]
Abstract
Wolfram syndrome 1 (WS1) is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, deafness, and other abnormalities. WS1 usually results in death before the age of 50 years. The pathogenesis of WS1 is ascribed to mutations of human WFS1 gene on chromosome 4p encoding a transmembrane protein called wolframin, which has physiological functions in membrane trafficking, secretion, processing, and/or regulation of ER calcium homeostasis. Different types of WFS1 mutations have been identified, and some of these have been associated with a dominant, severe type of WS. Mutations of CISD2 gene cause autosomal recessive Wolfram syndrome 2 (WS2) characterized by the absence of diabetes insipidus and psychiatric disorders, and by bleeding upper intestinal ulcer and defective platelet aggregation. Other WFS1-related disorders such as DFNA6/14/38 nonsyndromic low-frequency sensorineural hearing loss and Wolfram syndrome-like disease with autosomal dominant transmission have been described. WS1 is a devastating disease for the patients and their families. Thus, early diagnosis is imperative to enable proper prognostication, prevent complications, and reduce the transmission to further progeny. Although there is currently no effective therapy, potential new drugs have been introduced, attempting to improve the progression of this fatal disease.
Collapse
|
12
|
Tekko T, Lakspere T, Allikalt A, End J, Kõlvart KR, Jagomäe T, Terasmaa A, Philips MA, Visnapuu T, Väärtnõu F, Gilbert SF, Rinken A, Vasar E, Lilleväli K. Wfs1 is expressed in dopaminoceptive regions of the amniote brain and modulates levels of D1-like receptors. PLoS One 2017; 12:e0172825. [PMID: 28267787 PMCID: PMC5436468 DOI: 10.1371/journal.pone.0172825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/10/2017] [Indexed: 11/27/2022] Open
Abstract
During amniote evolution, the construction of the forebrain has diverged across
different lineages, and accompanying the structural changes, functional
diversification of the homologous brain regions has occurred. This can be
assessed by studying the expression patterns of marker genes that are relevant
in particular functional circuits. In all vertebrates, the dopaminergic system
is responsible for the behavioral responses to environmental stimuli. Here we
show that the brain regions that receive dopaminergic input through dopamine
receptor D1 are relatively conserved, but with some important
variations between three evolutionarily distant vertebrate lines–house mouse
(Mus musculus), domestic chick (Gallus gallus
domesticus) / common quail (Coturnix coturnix) and
red-eared slider turtle (Trachemys scripta). Moreover, we find
that in almost all instances, those brain regions expressing D1-like dopamine
receptor genes also express Wfs1. Wfs1 has been studied
primarily in the pancreas, where it regulates the endoplasmic reticulum (ER)
stress response, cellular Ca2+ homeostasis, and insulin production
and secretion. Using radioligand binding assays in wild type and
Wfs1-/- mouse brains, we show that the number of
binding sites of D1-like dopamine receptors is increased in the hippocampus of
the mutant mice. We propose that the functional link between Wfs1 and D1-like
dopamine receptors is evolutionarily conserved and plays an important role in
adjusting behavioral reactions to environmental stimuli.
Collapse
Affiliation(s)
- Triin Tekko
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Triin Lakspere
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | - Anni Allikalt
- Institute of Chemistry, University of Tartu, Tartu,
Estonia
| | - Jaanus End
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | | | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Anton Terasmaa
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Tanel Visnapuu
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Fred Väärtnõu
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
of America
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu,
Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
13
|
Congenital central diabetes insipidus and optic atrophy in a Wolfram newborn: is there a role for WFS1 gene in neurodevelopment? Ital J Pediatr 2014; 40:76. [PMID: 25255707 PMCID: PMC4422421 DOI: 10.1186/s13052-014-0076-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/09/2014] [Indexed: 12/01/2022] Open
Abstract
Background Wolfram syndrome (WS) is an autosomal recessive neurodegenerative disorder characterized by diabetes mellitus (DM), optic atrophy (OA), central diabetes insipidus (CDI) and deafness (D). The phenotype of the disease has been associated with several mutations in the WFS1 gene, a nuclear gene localized on chromosome 4. Since the discovery of the association between WFS1 gene and Wolfram syndrome, more than 150 mutations have been identified in WS patients. We previously described the first case of perinatal onset of Wolfram syndrome newborn carrying a segmental uniparental heterodysomy affecting the short arm of chromosome 4 responsible for a significant reduction in wolframin expression. Here we review and discuss the pathophysiological mechanisms that we believe responsible for the perinatal onset of Wolfram syndrome as these data strongly suggest a role for WFS1 gene in foetal and neonatal neurodevelopment. Case presentation We described a male patient of 30 weeks’ gestation with intrauterine growth restriction and poly-hydramnios. During the first days of life, the patient showed a 19% weight loss associated with polyuria and hypernatremia. The presence of persistent hypernatremia (serum sodium 150 mEq/L), high plasma osmolarity (322 mOsm/L) and low urine osmolarity (190 mOsm/l) with a Uosm/Posm ratio < 1 were consistent with CDI. The diagnosis of CDI was confirmed by the desmopressin test and the brain magnetic resonance imaging (MRI) at 34 weeks of age, that showed the lack of posterior pituitary hyperintense signal. In addition, a bilateral asymmetrical optic nerve hypoplasia associated with right orbital bone hypoplasia was observed, suggesting the diagnosis of WF. During the five years follow-up the patient did not developed glucose intolerance or diabetes mellitus. By the end of the second year of life, primary non-autoimmune central hypothyroidism and mild neurodevelopment retardation were diagnosed. Conclusions The analysis of our case, in the light of the most recent literature, suggests a possible role for WFS1 gene in the development of certain brain structures during the fetal period. Wolfram syndrome should be considered in the differential diagnosis of the rare cases of congenital central diabetes insipidus developed in the neonatal period.
Collapse
|
14
|
Tekko T, Lilleväli K, Luuk H, Sütt S, Truu L, Örd T, Möls M, Vasar E. Initiation and developmental dynamics of Wfs1 expression in the context of neural differentiation and ER stress in mouse forebrain. Int J Dev Neurosci 2014; 35:80-8. [PMID: 24694561 DOI: 10.1016/j.ijdevneu.2014.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 03/22/2014] [Accepted: 03/23/2014] [Indexed: 02/04/2023] Open
Abstract
Wolframin (Wfs1) is a membrane glycoprotein that resides in the endoplasmic reticulum (ER) and regulates cellular Ca(2+) homeostasis. In pancreas Wfs1 attenuates unfolded protein response (UPR) and protects cells from apoptosis. Loss of Wfs1 function results in Wolfram syndrome (OMIM 222300) characterized by early-onset diabetes mellitus, progressive optic atrophy, diabetes insipidus, deafness, and psychiatric disorders. Similarly, Wfs1-/- mice exhibit diabetes and increased basal anxiety. In the adult central nervous system Wfs1 is prominent in central extended amygdala, striatum and hippocampus, brain structures largely involved in behavioral adaptation of the organism. Here, we describe the initiation pattern of Wfs1 expression in mouse forebrain using mRNA in situ hybridization and compare it with Synaptophysin (Syp1), a gene encoding synaptic vesicle protein widely used as neuronal differentiation marker. We show that the expression of Wfs1 starts during late embryonic development in the dorsal striatum and amygdala, then expands broadly at birth, possessing several transitory regions during maturation. Syp1 expression precedes Wfs1 and it is remarkably upregulated during the period of Wfs1 expression initiation and maturation, suggesting relationship between neural activation and Wfs1 expression. Using in situ hybridization and quantitative real-time PCR we show that UPR-related genes (Grp78, Grp94, and Chop) display dynamic expression in the perinatal brain when Wfs1 is initiated and their expression pattern is not altered in the brain lacking functional Wfs1.
Collapse
Affiliation(s)
- Triin Tekko
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Department of Developmental Biology, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 46 Vanemuise Street, 51014 Tartu, Estonia.
| | - Hendrik Luuk
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Silva Sütt
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Laura Truu
- Department of Developmental Biology, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 46 Vanemuise Street, 51014 Tartu, Estonia; Competence Centre for Cancer Research, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Tiit Örd
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Märt Möls
- Institute of Mathematical Statistics, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|
15
|
Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, Tonegawa S. Island cells control temporal association memory. Science 2014; 343:896-901. [PMID: 24457215 PMCID: PMC5572219 DOI: 10.1126/science.1244634] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Episodic memory requires associations of temporally discontiguous events. In the entorhinal-hippocampal network, temporal associations are driven by a direct pathway from layer III of the medial entorhinal cortex (MECIII) to the hippocampal CA1 region. However, the identification of neural circuits that regulate this association has remained unknown. In layer II of entorhinal cortex (ECII), we report clusters of excitatory neurons called island cells, which appear in a curvilinear matrix of bulblike structures, directly project to CA1, and activate interneurons that target the distal dendrites of CA1 pyramidal neurons. Island cells suppress the excitatory MECIII input through the feed-forward inhibition to control the strength and duration of temporal association in trace fear memory. Together, the two EC inputs compose a control circuit for temporal association memory.
Collapse
Affiliation(s)
- Takashi Kitamura
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Michele Pignatelli
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Junghyup Suh
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Keigo Kohara
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Atsushi Yoshiki
- RIKEN BioResource Center, 3-1-1 Koyadai, Ibaraki 305-0074, Japan
| | - Kuniya Abe
- RIKEN BioResource Center, 3-1-1 Koyadai, Ibaraki 305-0074, Japan
| | - Susumu Tonegawa
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
- Howard Hughes Medical Institute at MIT, Cambridge, MA 02139, U.S.A
| |
Collapse
|
16
|
Elli FM, Ghirardello S, Giavoli C, Gangi S, Dioni L, Crippa M, Finelli P, Bergamaschi S, Mosca F, Spada A, Beck-Peccoz P. A new structural rearrangement associated to Wolfram syndrome in a child with a partial phenotype. Gene 2012; 509:168-72. [PMID: 22771918 DOI: 10.1016/j.gene.2012.06.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/25/2012] [Indexed: 01/17/2023]
Abstract
Wolfram syndrome (WS) is a rare autosomal recessive disorder characterized by diabetes insipidus (DI), insulin-dependent diabetes mellitus (DM), optic atrophy (OA) and deafness caused by mutations in WFS1 gene (4p16.1), which encodes an endoplasmic reticulum protein, called Wolframin. We describe the case of an infant who presented hypernatremia and severe hypoplasia of the left eyeball with alteration of visual evoked potentials. Persistent hypernatremia, iposmolar polyuria and high plasma osmolality suggested DI, confirmed by a normal urine concentration after vasopressin test. Treatment with vasopressin allowed a normalization of sodium levels and urine output. Brain magnetic resonance imaging showed absence of the neurohypophysis hyperintense signal, normal adenohypophysis and optic tracts hypoplasia. The concomitant presence of DI and OA, even in the absence of DM and deafness, prompted the suspicion of WS and complete genetic analysis was performed. Genomic DNA sequencing of WFS1 showed no inactivating mutations described to date, but suggested a structural mutation as markers genotyping revealed a segmental paternal heterodisomy involving the upstream regulatory region (promoter and 5'UTR). cDNA sequencing revealed the coexistence of the wild-type transcript and two splice variants; one variant, probably benign, is known in literature and the other one causes the loss of exon 2, containing the translation initiation site. Western blot confirmed a marked protein reduction. During the clinical follow-up child's condition remained stable and glucose metabolism is still in the standard. In conclusion, the phenotype associated with this structural rearrangement, which substantially reduces the synthesis of Wolframin, confirms a tissue-specific pattern of expression of WFS1, suggests the presence of a different protein dosage sensitivity in different tissues and could be causative of DI and OA in our patient. The "incomplete" phenotype here described, usually absent in typical WS cases, is explained by the residual Wolframin expression that would preserve other organs, i.e. pancreatic islets. A careful longitudinal clinical follow-up will assess any changes in the phenotypic penetrance in our patient.
Collapse
Affiliation(s)
- Francesca M Elli
- Endocrine Unit, Department of Clinical Sciences and Community Health,Università degli Studi di Milano, Fondazione IRCCS Cà-Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Wolfram syndrome (WS) (MIM 222300) is a rare multisystem neurodegenerative disorder of autosomal recessive inheritance, also known as DIDMOAD (diabetes insipidus, insulin-deficient diabetes mellitus, optic atrophy and deafness). A Wolfram gene (WFS1) has been mapped to chromosome 4p16.1 which encodes an endoplasmic reticulum (ER) membrane-embedded protein. ER localization suggests that WFS1 protein has physiological functions in membrane trafficking, secretion, processing and/or regulation of ER calcium omeostasis. Disturbances or overloading of these functions induce ER stress responses, including apoptosis. Most WS patients carry mutations in this gene, but some studies provided evidence for genetic heterogeneity, and the genotype-phenotype relationships are not clear. Here we review the data regarding the mechanisms and the mutations of WFS1 gene that relate to WS.
Collapse
Affiliation(s)
- L Rigoli
- Department of Pediatrics, University Hospital, Messina, Italy.
| | | | | |
Collapse
|