1
|
Kiremitçi I, Yilmaz Ö, Çelik E, Shahdloo M, Huth AG, Çukur T. Attentional Modulation of Hierarchical Speech Representations in a Multitalker Environment. Cereb Cortex 2021; 31:4986-5005. [PMID: 34115102 PMCID: PMC8491717 DOI: 10.1093/cercor/bhab136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Humans are remarkably adept in listening to a desired speaker in a crowded environment, while filtering out nontarget speakers in the background. Attention is key to solving this difficult cocktail-party task, yet a detailed characterization of attentional effects on speech representations is lacking. It remains unclear across what levels of speech features and how much attentional modulation occurs in each brain area during the cocktail-party task. To address these questions, we recorded whole-brain blood-oxygen-level-dependent (BOLD) responses while subjects either passively listened to single-speaker stories, or selectively attended to a male or a female speaker in temporally overlaid stories in separate experiments. Spectral, articulatory, and semantic models of the natural stories were constructed. Intrinsic selectivity profiles were identified via voxelwise models fit to passive listening responses. Attentional modulations were then quantified based on model predictions for attended and unattended stories in the cocktail-party task. We find that attention causes broad modulations at multiple levels of speech representations while growing stronger toward later stages of processing, and that unattended speech is represented up to the semantic level in parabelt auditory cortex. These results provide insights on attentional mechanisms that underlie the ability to selectively listen to a desired speaker in noisy multispeaker environments.
Collapse
Affiliation(s)
- Ibrahim Kiremitçi
- Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara TR-06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara TR-06800, Turkey
| | - Özgür Yilmaz
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara TR-06800, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara TR-06800, Turkey
| | - Emin Çelik
- Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara TR-06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara TR-06800, Turkey
| | - Mo Shahdloo
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara TR-06800, Turkey
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Alexander G Huth
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94702, USA
| | - Tolga Çukur
- Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara TR-06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara TR-06800, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara TR-06800, Turkey
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94702, USA
| |
Collapse
|
2
|
Wu C, Zheng Y, Li J, Zhang B, Li R, Wu H, She S, Liu S, Peng H, Ning Y, Li L. Activation and Functional Connectivity of the Left Inferior Temporal Gyrus during Visual Speech Priming in Healthy Listeners and Listeners with Schizophrenia. Front Neurosci 2017; 11:107. [PMID: 28360829 PMCID: PMC5350153 DOI: 10.3389/fnins.2017.00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
Under a "cocktail-party" listening condition with multiple-people talking, compared to healthy people, people with schizophrenia benefit less from the use of visual-speech (lipreading) priming (VSP) cues to improve speech recognition. The neural mechanisms underlying the unmasking effect of VSP remain unknown. This study investigated the brain substrates underlying the unmasking effect of VSP in healthy listeners and the schizophrenia-induced changes in the brain substrates. Using functional magnetic resonance imaging, brain activation and functional connectivity for the contrasts of the VSP listening condition vs. the visual non-speech priming (VNSP) condition were examined in 16 healthy listeners (27.4 ± 8.6 years old, 9 females and 7 males) and 22 listeners with schizophrenia (29.0 ± 8.1 years old, 8 females and 14 males). The results showed that in healthy listeners, but not listeners with schizophrenia, the VSP-induced activation (against the VNSP condition) of the left posterior inferior temporal gyrus (pITG) was significantly correlated with the VSP-induced improvement in target-speech recognition against speech masking. Compared to healthy listeners, listeners with schizophrenia showed significantly lower VSP-induced activation of the left pITG and reduced functional connectivity of the left pITG with the bilateral Rolandic operculum, bilateral STG, and left insular. Thus, the left pITG and its functional connectivity may be the brain substrates related to the unmasking effect of VSP, assumedly through enhancing both the processing of target visual-speech signals and the inhibition of masking-speech signals. In people with schizophrenia, the reduced unmasking effect of VSP on speech recognition may be associated with a schizophrenia-related reduction of VSP-induced activation and functional connectivity of the left pITG.
Collapse
Affiliation(s)
- Chao Wu
- Beijing Key Laboratory of Behavior and Mental Health, Key Laboratory on Machine Perception, Ministry of Education, School of Psychological and Cognitive Sciences, Peking UniversityBeijing, China; School of Life Sciences, Peking UniversityBeijing, China; School of Psychology, Beijing Normal UniversityBeijing, China
| | - Yingjun Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Juanhua Li
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Bei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Ruikeng Li
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Haibo Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Shenglin She
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Sha Liu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Hongjun Peng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou, China
| | - Liang Li
- Beijing Key Laboratory of Behavior and Mental Health, Key Laboratory on Machine Perception, Ministry of Education, School of Psychological and Cognitive Sciences, Peking UniversityBeijing, China; The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital)Guangzhou, China; Beijing Institute for Brain Disorder, Capital Medical UniversityBeijing, China
| |
Collapse
|
3
|
Bornstein MH. Cultural Expressions and Neurobiological Underpinnings in Mother-Infant Interactions. MINNESOTA SYMPOSIA ON CHILD PSYCHOLOGY 2016. [DOI: 10.1002/9781119301981.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Radua J, Del Pozo NO, Gómez J, Guillen-Grima F, Ortuño F. Meta-analysis of functional neuroimaging studies indicates that an increase of cognitive difficulty during executive tasks engages brain regions associated with time perception. Neuropsychologia 2014; 58:14-22. [PMID: 24709569 DOI: 10.1016/j.neuropsychologia.2014.03.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We hypothesize that time perception and executive functions are interrelated and share neuroanatomical basis, and that fluctuations in levels of cognitive effort play a role in mediating that relation. The main goal of this study was to identify brain structures activated both by increases in cognitive activity and during time perception tasks. METHODS We performed a multimodal meta-analysis to identify common brain regions in the findings of (a) an SDM meta-analysis of neuroimaging studies assessing the brain response to increasing levels of cognitive difficulty, and (b) an ALE meta-analysis on neuroimaging of time perception (Ortuño, Guillén-Grima, López-García, Gómez, & Pla, 2011. Schizophr. Res., 125(2-3), 129-35). RESULTS AND CONCLUSIONS Consistent with results of previous, separate meta-analyses, the current study supports the hypothesis that there exists a group of brain regions engaged both in time perception tasks and during tasks requiring cognitive effort. Thus, brain regions associated with working memory and executive functions were found to be engaged during time estimation tasks, and regions associated with time perception were found to be engaged by an increase in the difficulty of non-temporal tasks. The implication is that temporal perception and cognitive processes demanding cognitive control become interlinked when there is an increase in the level of cognitive effort demanded.
Collapse
Affiliation(s)
- Joaquim Radua
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, United Kingdom; FIDMAG Germanes Hospitalàries, Centro de Investigación Biomédica en Red de Salud Mental, Madrid, CIBERSAM, Spain
| | | | - José Gómez
- Department of Psychiatry, Clínica Universidad de Navarra, University of Navarre, Navarre, Spain
| | - Francisco Guillen-Grima
- Department of Preventive Medicine, Clínica Universidad de Navarra, University of Navarre, Navarre, Spain
| | - Felipe Ortuño
- Department of Psychiatry, Clínica Universidad de Navarra, University of Navarre, Navarre, Spain.
| |
Collapse
|
5
|
Alho K, Rinne T, Herron TJ, Woods DL. Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies. Hear Res 2013; 307:29-41. [PMID: 23938208 DOI: 10.1016/j.heares.2013.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022]
Abstract
We meta-analyzed 115 functional magnetic resonance imaging (fMRI) studies reporting auditory-cortex (AC) coordinates for activations related to active and passive processing of pitch and spatial location of non-speech sounds, as well as to the active and passive speech and voice processing. We aimed at revealing any systematic differences between AC surface locations of these activations by statistically analyzing the activation loci using the open-source Matlab toolbox VAMCA (Visualization and Meta-analysis on Cortical Anatomy). AC activations associated with pitch processing (e.g., active or passive listening to tones with a varying vs. fixed pitch) had median loci in the middle superior temporal gyrus (STG), lateral to Heschl's gyrus. However, median loci of activations due to the processing of infrequent pitch changes in a tone stream were centered in the STG or planum temporale (PT), significantly posterior to the median loci for other types of pitch processing. Median loci of attention-related modulations due to focused attention to pitch (e.g., attending selectively to low or high tones delivered in concurrent sequences) were, in turn, centered in the STG or superior temporal sulcus (STS), posterior to median loci for passive pitch processing. Activations due to spatial processing were centered in the posterior STG or PT, significantly posterior to pitch processing loci (processing of infrequent pitch changes excluded). In the right-hemisphere AC, the median locus of spatial attention-related modulations was in the STS, significantly inferior to the median locus for passive spatial processing. Activations associated with speech processing and those associated with voice processing had indistinguishable median loci at the border of mid-STG and mid-STS. Median loci of attention-related modulations due to attention to speech were in the same mid-STG/STS region. Thus, while attention to the pitch or location of non-speech sounds seems to recruit AC areas less involved in passive pitch or location processing, focused attention to speech predominantly enhances activations in regions that already respond to human vocalizations during passive listening. This suggests that distinct attention mechanisms might be engaged by attention to speech and attention to more elemental auditory features such as tone pitch or location. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Kimmo Alho
- Helsinki Collegium for Advanced Studies, University of Helsinki, PO Box 4, FI 00014 Helsinki, Finland; Institute of Behavioural Sciences, University of Helsinki, PO Box 9, FI 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
6
|
LOPEZ-GORDO MA, PELAYO F. A BINARY PHASE-SHIFT KEYING RECEIVER FOR THE DETECTION OF ATTENTION TO HUMAN SPEECH. Int J Neural Syst 2013; 23:1350016. [DOI: 10.1142/s0129065713500160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Synthetic sounds, tone-beeps, vowels or syllables are typically used in the assessment of attention to auditory stimuli because they evoke a set of well-known event-related potentials, whose characteristics can be statistically contrasted. Such approach rules out the use of stimuli with non-predictable response, such as human speech. In this study we present a procedure based on the robust binary phase-shift keying (BPSK) receiver that permits the real-time detection of selective attention to human speeches in dichotic listening tasks. The goal was achieved by tagging the speeches with two barely-audible tags whose joined EEG response constitutes a reliable BPSK constellation, which can be detected by means of a BPSK receiver. The results confirmed the expected generation of the BPSK constellation by the human auditory system. Also, the bit-error rate and the information transmission rate achieved in the detection of attention fairly followed the expected curves and equations of the standard BPSK receiver. Actually, it was possible to detect attention as well as the estimation a priori of its accuracy based on the signal-to-noise ratio of the BPSK signals. This procedure, which permits the detection of the attention to human speeches, can be of interest for new potential applications, such as brain–computer interfaces, clinical assessment of the attention in real time or for entertainment.
Collapse
Affiliation(s)
- M. A. LOPEZ-GORDO
- Department of Automatic Engineering, Electronic, Architecture of Computers and Networks, University of Cadiz, c/Chile 1, 11002, Cadiz, Spain
| | - F. PELAYO
- Department of Computer Architecture and Technology, University of Granada, c/Periodista Daniel Saucedo, 18071, Granada, Spain
| |
Collapse
|
7
|
Venuti P, Caria A, Esposito G, De Pisapia N, Bornstein MH, de Falco S. Differential brain responses to cries of infants with autistic disorder and typical development: an fMRI study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2012; 33:2255-2264. [PMID: 22835685 PMCID: PMC3496246 DOI: 10.1016/j.ridd.2012.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 05/27/2023]
Abstract
This study used fMRI to measure brain activity during adult processing of cries of infants with autistic disorder (AD) compared to cries of typically developing (TD) infants. Using whole brain analysis, we found that cries of infants with AD compared to those of TD infants elicited enhanced activity in brain regions associated with verbal and prosodic processing, perhaps because altered acoustic patterns of AD cries render them especially difficult to interpret, and increased activity in brain regions associated with emotional processing, indicating that AD cries also elicit more negative feelings and may be perceived as more aversive and/or arousing. Perceived distress engendered by AD cries related to increased activation in brain regions associated with emotional processing. This study supports the hypothesis that cry is an early and meaningful anomaly displayed by children with AD. It could be that cries associated with AD alter parent-child interactions much earlier than the time that reliable AD diagnosis normally occurs.
Collapse
Affiliation(s)
- Paola Venuti
- Department of Cognitive Science and Education, University of Trento, Trento, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
LOPEZ-GORDO MA, PELAYO F, PRIETO A, FERNANDEZ E. AN AUDITORY BRAIN-COMPUTER INTERFACE WITH ACCURACY PREDICTION. Int J Neural Syst 2012; 22:1250009. [DOI: 10.1142/s0129065712500098] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fully auditory Brain-computer interfaces based on the dichotic listening task (DL-BCIs) are suited for users unable to do any muscular movement, which includes gazing, exploration or coordination of their eyes looking for inputs in form of feedback, stimulation or visual support. However, one of their disadvantages, in contrast with the visual BCIs, is their lower performance that makes them not adequate in applications that require a high accuracy. To overcome this disadvantage, we employed a Bayesian approach in which the DL-BCI was modeled as a Binary phase shift keying receiver for which the accuracy can be estimated a priori as a function of the signal-to-noise ratio. The results showed the measured accuracy to match the predefined target accuracy, thus validating this model that made possible to estimate in advance the classification accuracy on a trial-by-trial basis. This constitutes a novel methodology in the design of fully auditory DL-BCIs that let us first, define the target accuracy for a specific application and second, classify when the signal-to-noise ratio guarantees that target accuracy.
Collapse
Affiliation(s)
- M. A. LOPEZ-GORDO
- Department of Systems and Automatic Engineering, Electronic Technologic and Electronic, University of Cadiz, C/Chile 1, 11002, Cadiz, Spain
| | - F. PELAYO
- Department of Computer Architecture and Technology, University of Granada, C/Periodista Daniel Saucedo, 18071, Granada, Spain
| | - A. PRIETO
- Department of Computer Architecture and Technology, University of Granada, C/Periodista Daniel Saucedo, 18071, Granada, Spain
| | - E. FERNANDEZ
- Institute of Bioengineering, University of Miguel Hernandez, Avenida de la Universidad, 03202, Elche, Spain
| |
Collapse
|