1
|
Sbragia L, da Costa KM, Nour ALA, Ruano R, Santos MV, Machado HR. State of the art in translating experimental myelomeningocele research to the bedside. Childs Nerv Syst 2021; 37:2769-2785. [PMID: 34333685 DOI: 10.1007/s00381-021-05299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Myelomeningocele (MMC), the commonest type of spina bifida (SB), occurs due to abnormal development of the neural tube and manifest as failure of the complete fusion of posterior arches of the spinal column, leading to dysplastic growth of the spinal cord and meninges. It is associated with several degrees of motor and sensory deficits below the level of the lesion, as well as skeletal deformities, bladder and bowel incontinence, and sexual dysfunction. These children might develop varying degrees of neuropsychomotor delay, partly due to the severity of the injuries that affect the nervous system before birth, partly due to the related cerebral malformations (notably hydrocephalus-which may also lead to an increase in intracranial pressure-and Chiari II deformity). Traditionally, MMC was repaired surgically just after birth; however, intrauterine correction of MMC has been shown to have several potential benefits, including better sensorimotor outcomes (since exposure to amniotic fluid and its consequent deleterious effects is shortened) and reduced rates of hydrocephalus, among others. Fetal surgery for myelomeningocele, nevertheless, would not have been made possible without the development of experimental models of this pathological condition. Hence, the aim of the current article is to provide an overview of the animal models of MMC that were used over the years and describe how this knowledge has been translated into the fetal treatment of MMC in humans.
Collapse
Affiliation(s)
- Lourenço Sbragia
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karina Miura da Costa
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Landolffi Abdul Nour
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Ruano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas, Houston, TX, USA
| | - Marcelo Volpon Santos
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Khan MSI, Nabeka H, Islam F, Shimokawa T, Saito S, Li X, Kawabe S, Hamada F, Tachibana T, Matsuda S. Early neonatal loss of inhibitory synaptic input to the spinal motor neurons confers spina bifida-like leg dysfunction in a chicken model. Dis Model Mech 2017; 10:1421-1432. [PMID: 28982681 PMCID: PMC5769610 DOI: 10.1242/dmm.031054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023] Open
Abstract
Spina bifida aperta (SBA), one of the most common congenital malformations, causes lifelong neurological complications, particularly in terms of motor dysfunction. Fetuses with SBA exhibit voluntary leg movements in utero and during early neonatal life, but these disappear within the first few weeks after birth. However, the pathophysiological sequence underlying such motor dysfunction remains unclear. Additionally, because important insights have yet to be obtained from human cases, an appropriate animal model is essential. Here, we investigated the neuropathological mechanisms of progression of SBA-like motor dysfunctions in a neural tube surgery-induced chicken model of SBA at different pathogenesis points ranging from embryonic to posthatch ages. We found that chicks with SBA-like features lose voluntary leg movements and subsequently exhibit lower-limb paralysis within the first 2 weeks after hatching, coinciding with the synaptic change-induced disruption of spinal motor networks at the site of the SBA lesion in the lumbosacral region. Such synaptic changes reduced the ratio of inhibitory-to-excitatory inputs to motor neurons and were associated with a drastic loss of γ-aminobutyric acid (GABA)ergic inputs and upregulation of the cholinergic activities of motor neurons. Furthermore, most of the neurons in ventral horns, which appeared to be suffering from excitotoxicity during the early postnatal days, underwent apoptosis. However, the triggers of cellular abnormalization and neurodegenerative signaling were evident in the middle- to late-gestational stages, probably attributable to the amniotic fluid-induced in ovo milieu. In conclusion, we found that early neonatal loss of neurons in the ventral horn of exposed spinal cord affords novel insights into the pathophysiology of SBA-like leg dysfunction.
Collapse
Affiliation(s)
- Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan .,Department of Animal Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Farzana Islam
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu 501-1128, Japan
| | - Xuan Li
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Soichiro Kawabe
- Fukui Prefectural Dinosaur Museum, Katsuyama, Fukui 911-8601, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| |
Collapse
|
3
|
Evaluation of Injured Axons Using Two-Photon Excited Fluorescence Microscopy after Spinal Cord Contusion Injury in YFP-H Line Mice. Int J Mol Sci 2015; 16:15785-99. [PMID: 26184175 PMCID: PMC4519925 DOI: 10.3390/ijms160715785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/02/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022] Open
Abstract
Elucidation of the process of degeneration of injured axons is important for the development of therapeutic modules for the treatment of spinal cord injuries. The aim of this study was to establish a method for time-lapse observation of injured axons in living animals after spinal cord contusion injury. YFP (yellow fluorescent protein)-H transgenic mice, which we used in this study, express fluorescence in their nerve fibers. Contusion damage to the spinal cord at the 11th vertebra was performed by IH (Infinite Horizon) impactor, which applied a pressure of 50 kdyn. The damaged spinal cords were re-exposed during the observation period under anesthesia, and then observed by two-photon excited fluorescence microscopy, which can observe deep regions of tissues including spinal cord axons. No significant morphological change of injured axons was observed immediately after injury. Three days after injury, the number of axons decreased, and residual axons were fragmented. Seven days after injury, only fragments were present in the damaged tissue. No hind-limb movement was observed during the observation period after injury. Despite the immediate paresis of hind-limbs following the contusion injury, the morphological degeneration of injured axons was delayed. This method may help clarification of pathophysiology of axon degeneration and development of therapeutic modules for the treatment of spinal cord injury.
Collapse
|