1
|
Beanato E, Moon HJ, Windel F, Vassiliadis P, Wessel MJ, Popa T, Pauline M, Neufeld E, De Falco E, Gauthier B, Steiner M, Blanke O, Hummel FC. Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans. SCIENCE ADVANCES 2024; 10:eado4103. [PMID: 39475597 PMCID: PMC11524170 DOI: 10.1126/sciadv.ado4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Because of the depth of the hippocampal-entorhinal complex (HC-EC) in the brain, understanding of its role in spatial navigation via neuromodulation was limited in humans. Here, we aimed to better elucidate this relationship in healthy volunteers, using transcranial temporal interference electric stimulation (tTIS), a noninvasive technique allowing to selectively neuromodulate deep brain structures. We applied tTIS to the right HC-EC in either continuous or intermittent theta-burst stimulation patterns (cTBS or iTBS), compared to a control condition, during a virtual reality-based spatial navigation task and concomitant functional magnetic resonance imaging. iTBS improved spatial navigation performance, correlated with hippocampal activity modulation, and decreased grid cell-like activity in EC. Collectively, these data provide the evidence that human HC-EC activity can be directly and noninvasively modulated leading to changes of spatial navigation behavior. These findings suggest promising perspectives for patients suffering from cognitive impairment such as following traumatic brain injury or dementia.
Collapse
Affiliation(s)
- Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Hyuk-June Moon
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Maximillian J. Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Menoud Pauline
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
- ZMT Zurich MedTech AG, Zurich, Switzerland
| | - Emanuela De Falco
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Baptiste Gauthier
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
2
|
Wooten T, Sansevere KS, Siqueira S, McWilliams T, Peach S, Hussey EK, Brunyé T, Ward N. Evaluating the efficacy of cranial electrotherapy stimulation in mitigating anxiety-induced cognitive deficits. Int J Psychophysiol 2024; 202:112388. [PMID: 38944283 DOI: 10.1016/j.ijpsycho.2024.112388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Cranial electrotherapy stimulation (CES) is a form of non-invasive brain stimulation (NIBS) that has demonstrated potential to modulate neural activity in a manner that may be conducive to improved cognitive performance. While other forms of NIBS, such as transcranial direct current stimulation (tDCS), have received attention in the field as potential acute cognitive enhancers, CES remains relatively unexplored. The current study aimed to assess the efficacy of CES in improving acute cognitive performance under normal experimental conditions, as well as during sessions of induced situational anxiety (threat of shock or ToS). To study this question, participants completed a cognitive battery assessing processing speed and distinct aspects of executive functioning (working memory, inhibition, and task switching) in two separate sessions in which they received active and sham CES. Participants were randomly assigned to between subject groups of either situational anxiety (ToS) or control condition (no ToS). We predicted that active CES would improve performance on assessments of executive functioning (working memory, inhibition, and task switching) relative to sham CES under ToS. We did not find any significant effects of ToS, CES, or an interaction between ToS and CES for any measures of executive functioning or processing speed. These findings suggest that a single dose of CES does not enhance executive functioning or processing speed under normal conditions or during ToS.
Collapse
Affiliation(s)
- Thomas Wooten
- Department of Psychology, Tufts University, Medford, MA, United States.
| | - Kayla S Sansevere
- Department of Psychology, Tufts University, Medford, MA, United States
| | - Sara Siqueira
- Department of Psychology, Tufts University, Medford, MA, United States
| | - Thomas McWilliams
- Department of Psychology, Tufts University, Medford, MA, United States
| | - Sidney Peach
- Department of Psychology, Tufts University, Medford, MA, United States
| | | | - Tad Brunyé
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States; U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, United States
| | - Nathan Ward
- Department of Psychology, Tufts University, Medford, MA, United States
| |
Collapse
|
3
|
Malekahmad M, Frazer A, Zoghi M, Jaberzadeh S. Transcranial pulsed current stimulation: A scoping review of the current literature on scope, nature, underlying mechanisms, and gaps. Psychophysiology 2024; 61:e14521. [PMID: 38200645 DOI: 10.1111/psyp.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/28/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Transcranial pulsed current stimulation (tPCS) is a noninvasive brain stimulation technique that has aroused considerable attention in recent years. This review aims to provide an overview of the existing literature on tPCS, examine the scope and nature of previous research, investigate its underlying mechanisms, and identify gaps in the literature. Searching online databases resulted in 36 published tPCS studies from inception until May 2023. These studies were categorized into three groups: human studies on healthy individuals, human studies on clinical conditions, and animal studies. The findings suggest that tPCS has the potential to modulate brain excitability by entraining neural oscillations and utilizing stochastic resonance. However, the underlying mechanisms of tPCS are not yet fully understood and require further investigation. Furthermore, the included studies indicate that tPCS may have therapeutic potential for neurological diseases. However, before tPCS can be applied in clinical settings, a better understanding of its mechanisms is crucial. Hence, the tPCS studies were categorized into four types of research: basic, strategic, applied, and experimental research, to identify the nature of the literature and gaps. Analysis of these categories revealed that tPCS, with its diverse parameters, effects, and mechanisms, presents a wide range of research opportunities for future investigations.
Collapse
Affiliation(s)
- Mona Malekahmad
- Department of Physiotherapy, Monash University, Melbourne, Victoria, Australia
| | - Ashlyn Frazer
- Department of Physiotherapy, Monash University, Melbourne, Victoria, Australia
| | - Maryam Zoghi
- Discipline of Physiotherapy, Federation University, Melbourne, Victoria, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Chen X, You J, Ma H, Zhou M, Huang C. Transcranial pulse stimulation in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14372. [PMID: 37469252 PMCID: PMC10848065 DOI: 10.1111/cns.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Transcranial pulse stimulation (TPS) is a novel noninvasive ultrasonic brain stimulation that can increase cortical and corticospinal excitability, induce neuroplasticity, and increase functional connectivity within the brain. Several trials have confirmed its potential in treating Alzheimer's disease (AD). OBJECTIVE To investigate the effect and safety of TPS on AD. DESIGN A systematic review. METHODS PubMed, Embase via Ovid, Web of Science, Cochrane Library, CNKI (China National Knowledge Infrastructure), VIP (China Science and Technology Journal Database), and WanFang were searched from inception to April 1, 2023. Study selection, data extraction, and quality evaluation of the studies were conducted by two reviewers independently, with any controversy resolved by consensus. The Methodological Index for Nonrandomized Studies was used to assess the risk of bias. RESULTS Five studies were included in this review, with a total of 99 patients with AD. For cognitive performance, TPS significantly improved the scores of the CERAD (Consortium to Establish a Registry for Alzheimer's Disease) test battery, Alzheimer's Disease Assessment Scale (cognitive), Montreal Cognitive Assessment, and Mini-Mental Status Examination. For depressive symptoms, TPS significantly reduced the scores of the Alzheimer's Disease Assessment Scale (affective), Geriatric Depression Score, and Beck Depression Inventory. By functional magnetic resonance imaging, studies have shown that TPS improved cognitive performance in AD patients by increasing functional connectivity in the hippocampus, parahippocampal cortex, precuneus, and parietal cortex, and activating cortical activity in the bilateral hippocampus. TPS alleviated depressive symptoms in AD patients by decreasing functional connectivity between the ventromedial network (left frontal orbital cortex) and the salience network (right anterior insula). Adverse events in this review, including headache, worsening mood, jaw pain, nausea, and drowsiness, were reversible and lasted no longer than 1 day. No serious adverse events or complications were observed. CONCLUSIONS TPS is promising in improving cognitive performance and reducing depressive symptoms in patients with AD. TPS may be a safe adjunct therapy in the treatment of AD. However, these findings lacked a sham control and were limited by the small sample size of the included studies. Further research may be needed to better explore the potential of TPS. PATIENT AND PUBLIC INVOLVEMENT Patients and the public were not involved in this study.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Jiuhong You
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Hui Ma
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Mei Zhou
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Cheng Huang
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Wu Q, Fang G, Zhao J, Liu J. Effect of Transcranial Pulsed Current Stimulation on Fatigue Delay after Medium-Intensity Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127042. [PMID: 35742289 PMCID: PMC9222574 DOI: 10.3390/ijerph19127042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to investigate the effect of transcranial pulsed current stimulation (tPCS) on fatigue delay after medium-intensity training. Materials and Methods: Ninety healthy college athletes were randomly divided into an experimental group (n = 45) and control group (n = 45). The experimental group received medium-intensity training for a week. After each training, the experimental group received true stimulation of tPCS (continuous 15 min 1.5 mA current intensity stimulation). The control group received sham stimulation. The physiological and biochemical indicators of participants were tested before and after the experiment, and finally 30 participants in each group were included for data analysis. Results: In the experimental group, creatine kinase (CK), cortisol (C), time-domain heart rate variability indices root mean square of the successive differences (RMSSD), standard deviation of normal R-R intervals (SDNN), and frequency domain indicator low frequency (LF) all increased slowly after the intervention. Among these, CK, C, and SDNN values were significantly lower than those in the control group (p < 0.05). Testosterone (T), T/C, and heart rate variability frequency domain indicator high frequency (HF) in the experimental group decreased slowly after the intervention, and the HF value was significantly lower than that in the control group (p < 0.05). The changes in all of the indicators in the experimental group were smaller than those in the control group. Conclusion: The application of tPCS after medium-intensity training enhanced the adaptability to training and had a significant effect on the maintenance of physiological state. The application of tPCS can significantly promote the recovery of autonomic nervous system function, enhance the regulation of parasympathetic nerves, and delay the occurrence of fatigue.
Collapse
Affiliation(s)
- Qingchang Wu
- College of Sports Science, Nantong University, Nantong 226019, China;
| | - Guoliang Fang
- China Institute of Sport Science, Beijing 100061, China; (G.F.); (J.Z.)
| | - Jiexiu Zhao
- China Institute of Sport Science, Beijing 100061, China; (G.F.); (J.Z.)
| | - Jian Liu
- College of Sports Science, Nantong University, Nantong 226019, China;
- Correspondence:
| |
Collapse
|
6
|
Barra A, Rosenfelder M, Mortaheb S, Carrière M, Martens G, Bodien YG, Morales-Quezada L, Bender A, Laureys S, Thibaut A, Fregni F. Transcranial Pulsed-Current Stimulation versus Transcranial Direct Current Stimulation in Patients with Disorders of Consciousness: A Pilot, Sham-Controlled Cross-Over Double-Blind Study. Brain Sci 2022; 12:429. [PMID: 35447961 PMCID: PMC9031379 DOI: 10.3390/brainsci12040429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) over the prefrontal cortex can improve signs of consciousness in patients in a minimally conscious state. Transcranial pulsed-current stimulation (tPCS) over the mastoids can modulate brain activity and connectivity in healthy controls. This study investigated the feasibility of tPCS as a therapeutic tool in patients with disorders of consciousness (DoC) and compared its neurophysiological and behavioral effects with prefrontal tDCS. This pilot study was a randomized, double-blind sham-controlled clinical trial with three sessions: bi-mastoid tPCS, prefrontal tDCS, and sham. Electroencephalography (EEG) and behavioral assessments were collected before and after each stimulation session. Post minus pre differences were compared using Kruskal-Wallis and Wilcoxon signed-rank tests. Twelve patients with DoC were included in the study (eight females, four traumatic brain injury, 50.3 ± 14 y.o., 8.8 ± 10.5 months post-injury). We did not observe any side-effects following tPCS, nor tDCS, and confirmed their feasibility and safety. We did not find a significant effect of the stimulation on EEG nor behavioral outcomes for tPCS. However, consistent with prior findings, our exploratory analyses suggest that tDCS induces behavioral improvements and an increase in theta frontal functional connectivity.
Collapse
Affiliation(s)
- Alice Barra
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
| | - Martin Rosenfelder
- Department of Neurology, Therapiezentrum Burgau, Kapuzinerstrasse 34, 89331 Burgau, Germany; (M.R.); (A.B.)
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, 89081 Ulm, Germany
| | - Sepehr Mortaheb
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Physiology of Cognition Lab, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium
| | - Manon Carrière
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
| | - Geraldine Martens
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
| | - Yelena G. Bodien
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leon Morales-Quezada
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Andreas Bender
- Department of Neurology, Therapiezentrum Burgau, Kapuzinerstrasse 34, 89331 Burgau, Germany; (M.R.); (A.B.)
- Department of Neurology, Ludwig-Maximilians University (LMU), 81377 Munich, Germany
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre CIUSS, University Laval, Quebec, QC G1E1T2, Canada
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
7
|
Effect of transcranial direct current stimulation on the psychomotor, cognitive, and motor performances of power athletes. Sci Rep 2021; 11:9731. [PMID: 33958679 PMCID: PMC8102586 DOI: 10.1038/s41598-021-89159-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/19/2021] [Indexed: 11/08/2022] Open
Abstract
In sports science, transcranial direct current stimulation (tDCS) has many unknown effects on neuromuscular, psychomotor and cognitive aspects. Particularly, its impact on power performances remains poorly investigated. Eighteen healthy young males, all trained in a jumping sport (parkour) performed three experimental sessions: anodal tDCS applied either on the left dorsolateral prefrontal cortex (dlPFC, cathode in supraorbital area) or on the primary motor cortex (M1, cathode on contralateral shoulder), and a placebo condition (SHAM), each applied for 20 min at 2 mA. Pre and post, maximal vertical and horizontal jumps were performed, associated to leg neuromuscular assessment through electromyography and peripheral nerve stimulations. Actual and imagined pointing tasks were also performed to evaluate fine motor skills, and a full battery of cognitive and psychomotor tests was administered. M1 tDCS improved jump performance accompanied by an increase in supraspinal and spinal excitabilities. dlPFC stimulation only impacted the pointing tasks. No effect on cognitive tests was found for any of the tDCS conditions. To conclude, the type of performance (maximal versus accurate) affected depended upon the tDCS montage. Finally, athletes responded well to tDCS for motor performance while results to cognitive tests seemed unaffected, at least when implemented with the present rationale.
Collapse
|
8
|
Liu Z, Dong S, Zhong S, Huang F, Zhang C, Zhou Y, Deng H. The effect of combined transcranial pulsed current stimulation and transcutaneous electrical nerve stimulation on lower limb spasticity in children with spastic cerebral palsy: a randomized and controlled clinical study. BMC Pediatr 2021; 21:141. [PMID: 33761932 PMCID: PMC7989146 DOI: 10.1186/s12887-021-02615-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/17/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In the current study, we applied a combination of non-invasive neuromodulation modalities concurrently with multiple stimulating electrodes. Specifically, we used transcranial pulsed current stimulation (tPCS) and transcutaneous electrical nerve stimulation (TENS) as a novel strategy for improving lower limb spasticity in children with spastic cerebral palsy (SCP) categorized on levels III-V of the Gross Motor Function Classification System (GMFCS) with minimal side effects. METHODS Sixty-three SCP children aged 2-12 years, who were classified on levels III-V of the GMFCS were randomly assigned to one of two groups, resulting in 32 children in the experimental group and 31 children in the control group. The experimental group underwent a combination therapy of tPCS (400 Hz, 1 mA cerebello-cerebral stimulation) and TENS (400 Hz, max 10 mA) for 30 min, followed by 30 min of physiotherapy five times per week for 12 weeks. The control group underwent physiotherapy only 30 mins per day five times per week for 12 weeks. In total, all groups underwent 60 treatment sessions. The primary outcome measures were the Modified Ashworth Scale (MAS) and Modified Tardieu Scale (MTS). Evaluations were performed 3 days before and after treatment. RESULTS We found a significant improvement in MAS and MTS scores of the lower limbs in the experimental group compared to the control group in the hip adductors (Left: p = 0.002; Right: p = 0.002), hamstrings (Left: p = 0.001; Right: p < 0.001, and gastrocnemius (Left: p = 0.001; Right: p = 0.000). Moreover, MTS scores of R1, R2 and R2-R1 in left and right hip adduction, knee joint, and ankle joint all showed significant improvements (p ≤ 0.05). Analysis of MAS and MTS scores compared to baseline scores showed significant improvements in the experimental group but declines in the control group. CONCLUSION These results are among the first to demonstrate that a combination of tPCS and TENS can significantly improve lower limb spasticity in SCP children classified on GMFCS levels III-V with minimal side effects, presenting a novel strategy for addressing spasticity challenges in children with severe SCP. TRIAL REGISTRATION ChiCTR.org, ChiCTR1800020283, Registration: 22 December 2018 (URL: http://www.chictr.org.cn/showproj.aspx?proj=33953 ).
Collapse
Affiliation(s)
- Zhenhuan Liu
- Department of Pediatric Rehabilitation, Nanhai Maternity and Children's Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong Province, China.
| | - Shangsheng Dong
- Department of Pediatric Rehabilitation, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong Province, China
| | - Sandra Zhong
- Guangzhou Yirui Charitable Foundation, Guangzhou, Guangdong Province, China
| | - Fang Huang
- Department of Pediatric Rehabilitation, Guangzhou City Social Welfare Institute Rehabilitation Hospital, Guangzhou, Guangdong Province, China
| | - Chuntao Zhang
- Department of Pediatric Rehabilitation, Nanhai Maternity and Children's Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong Province, China
| | - Yuan Zhou
- Department of Pediatric Rehabilitation, Nanhai Maternity and Children's Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong Province, China
| | - Haorong Deng
- Department of Pediatric Rehabilitation, Guangzhou City Social Welfare Institute Rehabilitation Hospital, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Morales-Quezada L, Martinez D, El-Hagrassy MM, Kaptchuk TJ, Sterman MB, Yeh GY. Neurofeedback impacts cognition and quality of life in pediatric focal epilepsy: An exploratory randomized double-blinded sham-controlled trial. Epilepsy Behav 2019; 101:106570. [PMID: 31707107 PMCID: PMC7203763 DOI: 10.1016/j.yebeh.2019.106570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Children with epilepsy experience cognitive deficits and well-being issues that have detrimental effects on their development. Pharmacotherapy is the standard of care in epilepsy; however, few interventions exist to promote cognitive development and to mitigate disease burden. We aimed to examine the impact of two different modalities of neurofeedback (NFB) on cognitive functioning and quality-of-life (QOL) measurements in children and adolescents with controlled focal epilepsy. The study also explored the effects of NFB on clinical outcomes and electroencephalography (EEG) quantitative analysis. METHODS Participants (n = 44) with controlled focal epilepsy were randomized to one of three arms: sensorimotor rhythm (SMR) NFB (n = 15), slow cortical potentials (SCP) NFB (n = 16), or sham NFB (n = 13). All participants received 25 sessions of intervention. The attention switching task (AST), Liverpool Seizure Severity Scale (LSSS), seizure frequency (SF), EEG power spectrum, and coherence were measured at baseline, postintervention, and at 3-month follow-up. RESULTS In children and adolescents with controlled focal epilepsy, SMR training significantly reduced reaction time in the AST (p = 0.006), and this was correlated with the difference of change for theta power on EEG (p = 0.03); only the SMR group showed a significant decrease in beta coherence (p = 0.03). All groups exhibited improvement in QOL (p = <0.05). CONCLUSIONS This study provides the first data on two NFB modalities (SMR and SCP) including cognitive, neurophysiological, and clinical outcomes in pediatric epilepsy. Sensorimotor rhythm NFB improved cognitive functioning, while all the interventions showed improvements in QOL, demonstrating a powerful placebo effect in the sham group.
Collapse
Affiliation(s)
- Leon Morales-Quezada
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Diana Martinez
- Boston Neurodynamics, Brookline, Massachussetss, USA.,Neocemod, Centro de Neuromodulacion, Aguascalientes, Mexico
| | - Mirret M. El-Hagrassy
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Ted J. Kaptchuk
- Program in Placebo Studies and Therapeutic Encounter, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - M. Barry Sterman
- Department of Neurobiology, UCLA School of Medicine, USA; Department of Biobehavioral Psychiatry, UCLA School of Medicine, USA
| | - Gloria Y. Yeh
- Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Osher Center for Integrative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Ma Z, Du X, Wang F, Ding R, Li Y, Liu A, Wei L, Hou S, Chen F, Hu Q, Guo C, Jiao Q, Liu S, Fang B, Shen H. Cortical Plasticity Induced by Anodal Transcranial Pulsed Current Stimulation Investigated by Combining Two-Photon Imaging and Electrophysiological Recording. Front Cell Neurosci 2019; 13:400. [PMID: 31555097 PMCID: PMC6727068 DOI: 10.3389/fncel.2019.00400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Anodal-transcranial pulsed current stimulation (a-tPCS) has been used in human studies to modulate cortical excitability or improve behavioral performance in recent years. Multiple studies show crucial roles of astrocytes in cortical plasticity. The calcium activity in astrocytes could regulate synaptic transmission and synaptic plasticity. Whether the astrocytic activity is involved in a-tPCS-induced cortical plasticity is presently unknown. The purpose of this study is to investigate the calcium responses in neurons and astrocytes evoked by a-tPCS with different current intensities, and thereby provides some indication of the mechanisms underlying a-tPCS-induced cortical plasticity. Two-photon calcium imaging was used to record the calcium responses of neurons and astrocytes in mouse somatosensory cortex. Local field potential (LFP) evoked by sensory stimulation was used to assess the effects of a-tPCS on plasticity. We found that long-duration a-tPCS with high-intensity current could evoke large-amplitude calcium responses in both neurons and astrocytes, whereas long-duration a-tPCS with low-intensity current evoked large-amplitude calcium responses only in astrocytes. The astrocytic Ca2+ elevations are driven by noradrenergic-dependent activation of the alpha-1 adrenergic receptors (A1ARs), while the intense Ca2+ responses of neurons are driven by action potentials. LFP recordings demonstrated that low-intensity a-tPCS led to enhancement of cortical excitability while high-intensity a-tPCS resulted in diminution of cortical excitability. The results provide some evidence that the enhancement of a-tPCS-induced cortical excitability might be partly associated with calcium elevation in astrocytes, whereas the diminution of a-tPCS-induced cortical excitability might be caused by excessive calcium activity in neurons. These findings indicate that the appropriate current intensity should be used in the application of a-tPCS.
Collapse
Affiliation(s)
- Zengguang Ma
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xiaolang Du
- Department of Pharmacy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feifei Wang
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Ran Ding
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanyuan Li
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Liangpeng Wei
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Shaowei Hou
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Feng Chen
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Cunle Guo
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Qingyan Jiao
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Shujing Liu
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Bei Fang
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Carvalho S, Leite J, Fregni F. Transcranial Alternating Current Stimulation and Transcranial Random Noise Stimulation. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Leite J, Gonçalves ÓF, Pereira P, Khadka N, Bikson M, Fregni F, Carvalho S. The differential effects of unihemispheric and bihemispheric tDCS over the inferior frontal gyrus on proactive control. Neurosci Res 2017; 130:39-46. [PMID: 28842243 DOI: 10.1016/j.neures.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
Abstract
This study examined the effects of bihemispheric and unihemispheric transcranial Direct Current Stimulation (tDCS) over the inferior frontal gyrus (IFG) on proactive control. Sixteen participants were randomized to receive (i) bihemispheric tDCS, with a 35cm2 anodal electrode of the right IFG and a 35cm2 cathode electrode of left IFG or (ii) unihemispheric tDCS, with a 35cm2 anodal electrode of the right IFG and a 100cm2 electrode of the left IFG or (iii) sham tDCS, while performing a prepotent inhibition task. There were significant speed-accuracy tradeoff effects in terms of switch costs: unihemispheric tDCS significantly decreased the accuracy when compared to bihemispheric, and sham tDCS, while increased response time when comparing to bihemispheric and sham tDCS. The computational model showed a symmetrical field intensity for the bihemispheric tDCS montage, and an asymmetrical for the unihemispheric tDCS montage. This study confirms that unihemispheric tDCS over the rIFG has a significant impact on response inhibition. The lack of results of bihemispheric tDCS brings two important findings for this study: (i) left IFG seems to be also critically associated with inhibitory response control, and (ii) these results highlight the importance of considering the dual effects of tDCS when choosing the electrode montage.
Collapse
Affiliation(s)
- Jorge Leite
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Univ Portucalense, Portucalense Institute for Human Development - INPP, Oporto, Portugal; Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Óscar F Gonçalves
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrícia Pereira
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, 10031 USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, 10031 USA
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Carvalho
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Thibaut A, Russo C, Morales-Quezada L, Hurtado-Puerto A, Deitos A, Freedman S, Carvalho S, Fregni F. Neural signature of tDCS, tPCS and their combination: Comparing the effects on neural plasticity. Neurosci Lett 2017; 637:207-214. [PMID: 27765610 PMCID: PMC5541936 DOI: 10.1016/j.neulet.2016.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022]
Abstract
Transcranial pulsed current stimulation (tPCS) and transcranial direct current stimulation (tDCS) are two noninvasive neuromodulatory brain stimulation techniques whose effects on human brain and behavior have been studied individually. In the present study we aimed to quantify the effects of tDCS and tPCS, individually and in combination, on cortical activity, sensitivity and pain-related assessments in healthy individuals in order to understand their neurophysiological mechanisms and potential applications in clinical populations. A total of 48 healthy individuals participated in this randomized double blind sham controlled study. Participants were randomized to receive a single stimulation session of either: active or sham tPCS and active or sham tDCS. Quantitative electroencephalography (qEEG), sensitivity and pain assessments were used before and after each stimulation session. We observed that tPCS had a higher effect on power, as compared to tDCS, in several bandwidths on various cortical regions: the theta band in the parietal region (p=0.021), the alpha band in the temporal (p=0.009), parietal (p=0.0063), and occipital (p<0.0001) regions. We found that the combination of tPCS and tDCS significantly decreased power in the low beta bandwidth of the frontal (p=0.0006), central (p=0.0001), and occipital (p=0.0003) regions, when compared to sham stimulation. Additionally, tDCS significantly increased power in high beta over the temporal (p=0.0015) and parietal (p=0.0007) regions, as compared to sham. We found no effect on sensitivity or pain-related assessments. We concluded that tPCS and tDCS have different neurophysiological mechanisms, elicit distinct signatures, and that the combination of the two leads to no effect or a decrease on qEEG power. Further studies are required to examine the effects of these techniques on clinical populations in which EEG signatures have been found altered.
Collapse
Affiliation(s)
- Aurore Thibaut
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Coma Science Group, GIGA-Research, University and University Hospital of Liege, Liege, Belgium
| | - Cristina Russo
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milano, Italy
| | - Leon Morales-Quezada
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Aura Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Transcranial Magnetic Stimulation Clinical Service, Department of Psychiatry, Massachusetts General Hospital, Boston, USA
| | - Alícia Deitos
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Pain and Neuromodulation at UFRGS, Porto Alegre, Brazil
| | - Steven Freedman
- Division of Translational Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sandra Carvalho
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Felipe Fregni
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|