1
|
Zhou JZ, Deng J, Luo DX, Mai JW, Wu JY, Duan YJ, Dong B, Xin WJ, Xu T, Wei JY. Sex differences in functional and structural alterations of hippocampus region in chronic pain: a DTI and resting-state fMRI study. Front Neurosci 2024; 18:1428666. [PMID: 39308951 PMCID: PMC11412943 DOI: 10.3389/fnins.2024.1428666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction It is well known that there are significant differences in the prevalence of chronic pain between males and females. Human and animal imaging studies have shown that chronic pain profoundly alters the structure and function of brain regions. However, there is limited research on the sex-specific mechanisms underlying the brain plasticity and adaptive changes associated with chronic pain. In this article, we conducted a multimodal study to evaluate how nerve injury-induced chronic pain affects the brain. Methods Male and female Sprague-Dawley (SD) rats with spared nerve injury (SNI) model underwent resting-state functional magnetic resonance imaging (rs-fMRI) (male sham group: n = 18; male SNI group: n = 18; female sham group: n = 20; female SNI group: n = 18) and magnetic resonance diffusion tensor imaging (DTI) (male sham group: n = 23; male SNI group: n = 21; female sham group: n = 20; female SNI group: n = 21) scanning. ICA method, Fractional amplitude of low-frequency fluctuations (fALFF), immunofluorescence staining, and graph theory analysis was utilized to extract the rs-fMRI changes of brain regions of each group. Results Using SNI model, which promotes long-lasting mechanical allodynia, we found that neuropathic pain deeply modified the intrinsic organization of the brain functional network in male and female rats (main effect of operation: F = 298.449, P < 0.001). 64 independent components (ICs) in the brain were divided and assigned to 16 systems. In male rats, we observed significant alterations in the microstructure of the hippocampal cornu ammonis 1 and cornu ammonis 2 (CA1/CA2) region, as indicated by increased mean diffusivity (MD) (CA1_L: P = 0.02; CA1_R: P = 0.031; CA2_L: P = 0.035; CA2_R: P = 0.015) and radial diffusivity (RD) (CA1_L: P = 0.028; CA1_R: P = 0.033; CA2_L: P = 0.037; CA2_R: P = 0.038) values, along with enhanced activating transcription factor 3 (ATF3) expression. Conversely, in female rats, we found significant increases in the fractional amplitude of low frequency fluctuations (fALFF) value within the hippocampal dentate gyrus (DG) (F = 5.419, P = 0.023), accompanied by elevated c-Fos signal (F = 6.269, P = 0.031). Furthermore, graph theory analysis revealed notable differences in the small-world network of the hippocampal system in female rats, characterized by reduced small-world attributes and increased inter-nodal transmission efficiency. Discussion Our study indicates sex differences in structural and functional alterations in the hippocampal system in rats under chronic pain conditions. The results suggest that the hippocampus system plays an important role in the different mechanisms of chronic pain in different sexes. These findings provide reliable insights to explore the complex mechanisms underlying sex differences in chronic pain.
Collapse
Affiliation(s)
- Jun-Zhi Zhou
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
- Neuroscience Program, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Jie Deng
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
- Neuroscience Program, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Sun Yat-sen University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - De-Xing Luo
- Department of Anesthesiology, Huizhou Central People’s Hospital, Huizhou, China
| | - Jing-Wen Mai
- Department of Anesthesiology, Huizhou Central People’s Hospital, Huizhou, China
| | - Jia-Yan Wu
- Neuroscience Program, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Yu-Juan Duan
- Neuroscience Program, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Bo Dong
- Neuroscience Program, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Xin
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
- Neuroscience Program, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ting Xu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
- Neuroscience Program, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jia-You Wei
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhuhai, China
| |
Collapse
|
2
|
Cao J, Liu X, Liu JX, Zhao S, Guo YX, Wang GY, Wang XL. Inhibition of glutamatergic neurons in layer II/III of the medial prefrontal cortex alleviates paclitaxel-induced neuropathic pain and anxiety. Eur J Pharmacol 2022; 936:175351. [DOI: 10.1016/j.ejphar.2022.175351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
|