1
|
Li S, Wang Z, Li Y, Luo X, Ru T, Chen Q, Zhou G. Insomnia and emotional dysfunction: Altered brain network connectivity across sleep and wakefulness states. Sleep Med 2025; 133:106582. [PMID: 40449056 DOI: 10.1016/j.sleep.2025.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/19/2025] [Accepted: 05/12/2025] [Indexed: 06/02/2025]
Abstract
OBJECTIVE To investigate the relationship between insomnia-induced sleep disturbance and emotional dysfunction and whether the brain network functional connectivity patterns during either wakefulness or sleep states functioned as a mediator in this relationship. METHODS Twenty participants with non-clinical insomnia disorder (ID) and 20 normal controls (NC) were recruited and underwent resting-state Electroencephalography (EEG) recordings during wakefulness and sleep stages. Functional connectivity was analyzed using coherence (COH) across multiple frequency bands. The relationships between COH metrics and self-reported emotional measures and the potential mediation effects were investigated. RESULTS The ID group revealed sleep stage-specific alterations in brain network functional connectivity, with enhanced alpha connectivity being observed in non-rapid eye movement (NREM) sleep and increased delta connectivity in both phasic and tonic rapid eye movement (REM) sleep stages. Increased alpha band connectivity in anterior-posterior networks during wakefulness was associated with emotional regulation difficulties and depressive symptoms. Mediation analyses showed that alpha and delta band connectivity between frontal-occipital regions mediated the relationship between insomnia and emotional dysregulation. CONCLUSIONS These findings reveal the pattern of functional connectivity is differently changed in insomnia disorder across wakefulness and sleep states, and such connectivities play a mediation rolein relationship between chronic sleep disruption and emotional regulation in insomnia disorder. These findings provide a novel insight into the neurophysiological mechanisms linking sleep disruption to emotional dysfunction and suggest these aberrant functional connectivity patterns as potential neurophysiological targets for insomnia intervention.
Collapse
Affiliation(s)
- Siyu Li
- Lab of Light and Physio-psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China; School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Zhuo Wang
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Yun Li
- School of Health Management, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xue Luo
- Department of Psychiatry, Sleep Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Taotao Ru
- Lab of Light and Physio-psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| | - Qingwei Chen
- Lab of Light and Physio-psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| | - Guofu Zhou
- Lab of Light and Physio-psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Wang Q, Cheng H, Wang W. Video-PSG: An Intelligent Contactless Monitoring System for Sleep Staging. IEEE Trans Biomed Eng 2025; 72:965-977. [PMID: 39405136 DOI: 10.1109/tbme.2024.3480813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Polysomnography (PSG) is the gold standard for sleep staging in clinics, but its skin-contact nature makes it uncomfortable and inconvenient to use for long-term sleep monitoring. As a complementary part of PSG, the video cameras are not utilized to their full potential, only for manual check of simple sleep events, thereby ignoring the potential for physiological and semantic measurement. This leads to a pivotal research question: Can camera be used for sleep staging, and to what extent? We developed a camera-based contactless sleep staging system in the Institute of Respiratory Diseases and created a clinical video dataset of 20 adults. The camera-based feature set, derived from both physiological signals (pulse and breath) and motions all measured from a video, was evaluated for 4-class sleep staging (Wake-REM-Light-Deep). Three optimization strategies were proposed to enhance the sleep staging accuracy: using motion metrics to prune measurement outliers, creating a more personalized model based on the baseline calibration of waking-stage physiological signals, and deriving a specialized feature for REM detection. It achieved the best accuracy of 73.1% (kappa = 0.62, F1-score = 0.74) in the benchmark of five sleep-staging classifiers. Notably, the system exhibited high accuracy in predicting the overall sleep structure and subtle changes between different sleep stages. The study demonstrates that camera-based contactless sleep staging is a new value stream for sleep medicine, which also provides clinical and technical insights for future optimization and implementation.
Collapse
|
3
|
Balsamo F, Meneo D, Berretta E, Baglioni C, Gelfo F. Could sleep be a brain/cognitive/neural reserve-builder factor? A systematic review on the cognitive effects of sleep modulation in animal models. Neurosci Biobehav Rev 2025; 169:106015. [PMID: 39828234 DOI: 10.1016/j.neubiorev.2025.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The brain/cognitive/neural reserve concept suggests that lifelong experiences, from early life through adulthood, make the brain more resilient to neuronal damage. Modifiable lifestyle factors, such as sleep, can support the development and enhance such a reserve, helping to counteract age- or disease-related brain changes and their impact on cognition. Sleep plays a crucial role in cognitive functioning, and disruptions or disorders may increase neurodegenerative risks. This systematic review aims to explore how functional and disturbed sleep impacts cognitive functions and neuromorphological mechanisms in rodents, aiming to better understand its role in brain/cognitive/neural reserve development. This systematic review, registered on PROSPERO (ID: CRD42023423901) and conducted according to PRISMA-P guidelines, searched PubMed, Scopus, Web of Science, and Embase databases for studies up to June 2022, with terms related to sleep, rodents, and cognitive functions. Of the 28,666 articles identified, 142 met the inclusion criteria. Main results showed significant cognitive decline after sleep deprivation, especially in memory performance. These findings supports the importance of sleep as a critical factor in modulating brain/cognitive/neural reserve.
Collapse
Affiliation(s)
- Francesca Balsamo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; IRCCS Fondazione Santa Lucia, Rome 00179, Italy.
| | - Debora Meneo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy
| | | | - Chiara Baglioni
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; Department of Clinical Psychology and Psychophysiology/Sleep, Medicine, Centre for Mental Disorders, University Medical Centre, Freiburg, Germany
| | - Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; IRCCS Fondazione Santa Lucia, Rome 00179, Italy.
| |
Collapse
|
4
|
Gompf HS, Ferrari LL, Anaclet C. Chronic chemogenetic slow-wave-sleep enhancement in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634538. [PMID: 39896659 PMCID: PMC11785230 DOI: 10.1101/2025.01.23.634538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
While epidemiological associations and brief studies of sleep effects in human disease have been conducted, rigorous long-term studies of sleep manipulations and in animal models are needed to establish causation and to understand mechanisms. We have previously developed a mouse model of acute slow-wave-sleep (SWS) enhancement using chemogenetic activation of parafacial zone GABAergic neurons (PZGABA) in the parvicellular reticular formation of the pontine brainstem. However, it was unknown if SWS could be enhanced chronically in this model. In the present study, mice expressing the chemogenetic receptor hM3Dq in PZGABA were administered daily with one of three chemogenetic ligands, clozapine N-oxide (CNO), deschloroclozapine (DCZ) and compound 21 (C21), and sleep-wake phenotypes were analyzed using electroencephalogram (EEG) and electromyogram (EMG). We found that SWS time is increased for three hours, and at the same magnitude for at least six months. This phenotype is associated with an increase of slow wave activity (SWA) of similar magnitude throughout the 6-month dosing period. Interestingly, at the end of the 6-month dosing period, SWA remains increased for at least a week. This study validates a mouse model of chronic SWS enhancement that will allow mechanistic investigations into how SWS promotes physiological function and prevents diseases. The approach of a rotating schedule of three chemogenetic ligands may be broadly applicable in chemogenetic studies that require chronic administration.
Collapse
Affiliation(s)
- Heinrich S. Gompf
- Department of Neurological Surgery, University of California Davis School of Medicine
- Department of Neurobiology. University of Massachusetts Chan Medical School
| | - Loris L. Ferrari
- Department of Neurobiology. University of Massachusetts Chan Medical School
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California Davis School of Medicine
- Department of Neurobiology. University of Massachusetts Chan Medical School
| |
Collapse
|
5
|
André C, Martineau-Dussault MÈ, Baril AA, Marchi NA, Daneault V, Lorrain D, Hudon C, Bastien CH, Petit D, Thompson C, Poirier J, Montplaisir J, Gosselin N, Carrier J. Reduced rapid eye movement sleep in late middle-aged and older apolipoprotein E ɛ4 allele carriers. Sleep 2024; 47:zsae094. [PMID: 38634644 PMCID: PMC11236949 DOI: 10.1093/sleep/zsae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
STUDY OBJECTIVES Apolipoprotein E ɛ4 (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD). In addition, APOE4 carriers may exhibit sleep disturbances, but conflicting results have been reported, such that there is no clear consensus regarding which aspects of sleep are impacted. Our objective was to compare objective sleep architecture between APOE4 carriers and non-carriers, and to investigate the modulating impact of age, sex, cognitive status, and obstructive sleep apnea (OSA). METHODS A total of 198 dementia-free participants aged >55 years old (mean age: 68.7 ± 8.08 years old, 40.91% women, 41 APOE4 carriers) were recruited in this cross-sectional study. They underwent polysomnography, APOE4 genotyping, and a neuropsychological evaluation. ANCOVAs assessed the effect of APOE4 status on sleep architecture, controlling for age, sex, cognitive status, and the apnea-hypopnea index. Interaction terms were added between APOE4 status and covariates. RESULTS Rapid eye movement (REM) sleep percentage (F = 9.95, p = .002, ηp2 = 0.049) and duration (F = 9.23, p = .003, ηp2 = 0.047) were lower in APOE4 carriers. The results were replicated in a subsample of 112 participants without moderate-to-severe OSA. There were no significant interactions between APOE4 status and age, sex, cognitive status, and OSA in the whole sample. CONCLUSIONS Our results show that APOE4 carriers exhibit lower REM sleep duration, including in cognitively unimpaired individuals, possibly resulting from early neurodegenerative processes in regions involved in REM sleep generation and maintenance.
Collapse
Affiliation(s)
- Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicola Andrea Marchi
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Center for Investigation and Research in Sleep, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Dominique Lorrain
- Research Centre on Aging, University Institute of Geriatrics of Sherbrooke, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC, Canada
- Department of Psychology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Carol Hudon
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Québec City, QC, Canada
- School of Psychology, Université Laval, Québec City, QC, Canada
| | - Célyne H Bastien
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Québec City, QC, Canada
- School of Psychology, Université Laval, Québec City, QC, Canada
| | - Dominique Petit
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
| | - Judes Poirier
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, CIUSSS de l’Ouest-de-l’Ile-de-Montréal, Verdun, QC, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
Balsamo F, Berretta E, Meneo D, Baglioni C, Gelfo F. The Complex Relationship between Sleep and Cognitive Reserve: A Narrative Review Based on Human Studies. Brain Sci 2024; 14:654. [PMID: 39061395 PMCID: PMC11274941 DOI: 10.3390/brainsci14070654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Sleep and brain/cognitive/neural reserve significantly impact well-being and cognition throughout life. This review aims to explore the intricate relationship between such factors, with reference to their effects on human cognitive functions. The specific goal is to understand the bidirectional influence that sleep and reserve exert on each other. Up to 6 February 2024, a methodical search of the literature was conducted using the PubMed database with terms related to brain, cognitive or neural reserve, and healthy or disturbed sleep. Based on the inclusion criteria, 11 articles were selected and analyzed for this review. The articles focus almost exclusively on cognitive reserve, with no explicit connection between sleep and brain or neural reserve. The results evidence sleep's role as a builder of cognitive reserve and cognitive reserve's role as a moderator in the effects of physiological and pathological sleep on cognitive functions. In conclusion, the findings of the present review support the notion that both sleep and cognitive reserve are critical factors in cognitive functioning. Deepening comprehension of the interactions between them is essential for devising strategies to enhance brain health and resilience against age- and pathology-related conditions.
Collapse
Affiliation(s)
- Francesca Balsamo
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | | | - Debora Meneo
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| | - Chiara Baglioni
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
7
|
Yang S, Liu GX, Zhou YS, Ma ZJ, Xia L, Zhang HL, Li XY, Kong XY, Ge YJ, Zang P, Chen GH. Relationships between rumination and different types of rapid eye movement sleep in patients with chronic insomnia disorder. Sleep Med 2024; 117:162-168. [PMID: 38547593 DOI: 10.1016/j.sleep.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Rumination, a common factor of chronic insomnia disorder (CID) caused by cognitive-emotional arousal, is associated with an increased amount of rapid eye movement (REM) sleep. However, the specific subtypes, such as phasic REM and tonic REM, that contribute to the increased REM sleep have not been reported. This study aimed to determine the association between rumination and different REM sleep subtypes in patients with CID. METHODS This study enrolled 35 patients with CID and 27 age- and sex-matched healthy controls. The Immersion-Rumination Questionnaire evaluated participants' rumination, and the Insomnia Severity Index was used to assess insomnia severity. Finally, polysomnography was used to monitor objective sleep quality and quantification of different types of REM. RESULTS The CID patients had higher rumination scores than the healthy controls. They had a shorter REM sleep duration, less phasic REM, a lower percentage of phasic REM time, and a higher percentage of tonic REM time. Spectral analysis revealed that the patients affected by insomnia had higher β power during REM sleep, higher β and σ power during phasic REM sleep, and higher β, and γ power during tonic REM sleep. Partial correlation analysis showed that rumination in the CID patients correlated negatively with the duration of phasic REM sleep. Additionally, rumination correlated negatively with δ power in REM sleep and positively with β power in REM sleep, tonic REM sleep, phasic REM sleep, N3and N2 sleep in the patients with CID. CONCLUSION The CID patients had stronger rumination, reduced total and phasic REM sleep, and the stronger rumination was, the shorter phasic REM was and the higher fast (β) wave power in REM sleep.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), PR China; Department of Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Gao-Xia Liu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), PR China
| | - Yu-Shun Zhou
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), PR China
| | - Zi-Jie Ma
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), PR China
| | - Lan Xia
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), PR China
| | - Hai-Lin Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), PR China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), PR China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), PR China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), PR China.
| | - Ping Zang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), PR China; Department of Geratology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, (Chaohu), PR China.
| |
Collapse
|
8
|
Roliz AH, Kothare S. The Relationship Between Sleep, Epilepsy, and Development: a Review. Curr Neurol Neurosci Rep 2023; 23:469-477. [PMID: 37458984 DOI: 10.1007/s11910-023-01284-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW To review the relationship between sleep, neurodevelopment, and epilepsy and potential underlying physiological mechanisms. RECENT FINDINGS Recent studies have advanced our understanding of the role of sleep in early brain development and epilepsy. Epileptogenesis has been proposed to occur when there is a failure of normal adaptive processes of synaptic and homeostatic plasticity. This sleep-dependent transformation may explain the cognitive impairment seen in epilepsy, especially when occurring early in life. The glymphatic system, a recently discovered waste clearance system of the central nervous system, has been described as a potential mechanism underlying the relationship between sleep and seizures and may account for the common association between sleep deprivation and increased seizure risk. Epilepsy and associated sleep disturbances can critically affect brain development and neurocognition. Here we highlight recent findings on this topic and emphasize the importance of screening for sleep concerns in people with epilepsy.
Collapse
Affiliation(s)
- Annie H Roliz
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Ave, Suite W290, New Hyde Park, NY, 11042, USA
| | - Sanjeev Kothare
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Ave, Suite W290, New Hyde Park, NY, 11042, USA.
| |
Collapse
|
9
|
Mogavero MP, Godos J, Grosso G, Caraci F, Ferri R. Rethinking the Role of Orexin in the Regulation of REM Sleep and Appetite. Nutrients 2023; 15:3679. [PMID: 37686711 PMCID: PMC10489991 DOI: 10.3390/nu15173679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Orexin plays a significant role in the modulation of REM sleep, as well as in the regulation of appetite and feeding. This review explores, first, the current evidence on the role of orexin in the modulation of sleep and wakefulness and highlights that orexin should be considered essentially as a neurotransmitter inhibiting REM sleep and, to a much lesser extent, a wake promoting agent. Subsequently, the relationship between orexin, REM sleep, and appetite regulation is examined in detail, shedding light on their interconnected nature in both physiological conditions and diseases (such as narcolepsy, sleep-related eating disorder, idiopathic hypersomnia, and night eating syndrome). Understanding the intricate relationship between orexin, REM sleep, and appetite regulation is vital for unraveling the complex mechanisms underlying sleep-wake patterns and metabolic control. Further research in this field is encouraged in order to pave the way for novel therapeutic approaches to sleep disorders and metabolic conditions associated with orexin dysregulation.
Collapse
Affiliation(s)
- Maria P. Mogavero
- Department of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy;
- San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, 20127 Milan, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (G.G.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (G.G.)
| | - Filippo Caraci
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
10
|
Li L, Liang T, Jiang T, Li Y, Yang L, Wu L, Yang J, Ding Y, Wang J, Chen M, Zhang J, Xie X, Wu Q. Gut microbiota: Candidates for a novel strategy for ameliorating sleep disorders. Crit Rev Food Sci Nutr 2023; 64:10772-10788. [PMID: 37477274 DOI: 10.1080/10408398.2023.2228409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The aim of this review was to evaluate the feasibility of treating sleep disorders using novel gut microbiota intervention strategies. Multiple factors can cause sleep disorders, including an imbalance in the gut microbiota. Studies of the microbiome-gut-brain axis have revealed bidirectional communication between the central nervous system and gut microbes, providing a more comprehensive understanding of mood and behavioral regulatory patterns. Changes in the gut microbiota and its metabolites can stimulate the endocrine, nervous, and immune systems, which regulate the release of neurotransmitters and alter the activity of the central nervous system, ultimately leading to sleep disorders. Here, we review the main factors affecting sleep, discuss possible pathways and molecular mechanisms of the interaction between sleep and the gut microbiota, and compare common gut microbiota intervention strategies aimed at improving sleep physiology.
Collapse
Affiliation(s)
- Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Juan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|