1
|
Kim M, Cai Q, Oh Y. Therapeutic potential of alpha-1 antitrypsin in human disease. Ann Pediatr Endocrinol Metab 2018; 23:131-135. [PMID: 30286568 PMCID: PMC6177666 DOI: 10.6065/apem.2018.23.3.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
Alpha-1 antitrypsin (AAT), an alpha globulin glycoprotein, is a member of the serine protease inhibitor (serpin) superfamily. The clinical significance of AAT is highlighted by AAT deficiency. Genetic deficiency of AAT can present as several neutrophilic diseases associated with emphysema, liver cirrhosis, panniculitis, and systemic vasculitis. Recently, animal and human studies have shown that AAT can control inflammatory, immunological, and tissue-protective responses. In addition, AAT treatment can prevent overt hyperglycemia, increase insulin secretion, and reduce cytokine-mediated apoptosis of pancreatic β-cells in diabetes. These multifunctional roles of AAT draw attention to the glycoprotein's therapeutic potential for many inflammatory and autoimmune diseases beyond AAT deficiency. As underlying mechanisms, recent studies have suggested the importance of serine protease inhibitory activity of AAT in obesity-associated insulin resistance, chronic obstructive pulmonary disease, and cystic fibrosis. In this review, we explore the multiple functions of AAT, in particular, the anti-inflammatory and serine protease inhibitory functions, and AAT's therapeutic potential in a variety of human diseases through published literature.
Collapse
Affiliation(s)
- Minsun Kim
- Department of Pediatrics, Chonbuk National University Medical School, Jeonju, Korea,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Qing Cai
- Department of Pathology, School of Medicine Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Youngman Oh
- Department of Pathology, School of Medicine Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA,Address for correspondence: Youngman Oh, PhD Department of Pathology, School of Medicine Medical College of Virginia Campus, Virginia Commonwealth University, 1101 East Marshall St., P.O. Box 980662, Richmond, VA 23298-0662, USA Tel: +1-804-827-1324 Fax: +1-804-828-9749 E-mail:
| |
Collapse
|
2
|
|
3
|
Thys E, Sabbe B, De Hert M. The assessment of creativity in creativity/psychopathology research - a systematic review. Cogn Neuropsychiatry 2014; 19:359-77. [PMID: 24512614 DOI: 10.1080/13546805.2013.877384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The possible link between creativity and psychopathology has been a long time focus of research up to the present day. However, this research is hampered by methodological problems, especially the definition and assessment of creativity. This makes interpretation and comparison of studies difficult and possibly accounts for the contradictory results of this research. METHODS In this systematic review of the literature, research articles in the field of creativity and psychopathology were searched for creativity assessment tools. The tools used in the collected articles are presented and discussed. RESULTS The results indicate that a multitude of creativity assessment tools were used, that many studies only used one tool to assess creativity and that most of these tools were only used in a limited number of studies. A few assessment tools stand out by a more frequent use, also outside psychopathological research, and more solid psychometric properties. CONCLUSION Most scales used to evaluate creativity have poor psychometric properties. The scattered methodology to assess creativity compromises the generalizability and validity of this research. The field should creatively develop new validated instruments.
Collapse
Affiliation(s)
- E Thys
- a University Psychiatric Centre KU Leuven , Kortenberg , Belgium
| | | | | |
Collapse
|
4
|
Permenter MG, Dennis WE, Sutto TE, Jackson DA, Lewis JA, Stallings JD. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines. PLoS One 2013; 8:e83751. [PMID: 24386269 PMCID: PMC3875483 DOI: 10.1371/journal.pone.0083751] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 12/23/2022] Open
Abstract
Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.
Collapse
Affiliation(s)
| | - William E. Dennis
- US Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Thomas E. Sutto
- Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - David A. Jackson
- US Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - John A. Lewis
- US Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Jonathan D. Stallings
- US Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Schmechel DE, Edwards CL. Fibromyalgia, mood disorders, and intense creative energy: A1AT polymorphisms are not always silent. Neurotoxicology 2012; 33:1454-1472. [DOI: 10.1016/j.neuro.2012.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 03/02/2012] [Indexed: 11/30/2022]
|
6
|
Patton SM, Coe CL, Lubach GR, Connor JR. Quantitative proteomic analyses of cerebrospinal fluid using iTRAQ in a primate model of iron deficiency anemia. Dev Neurosci 2012; 34:354-65. [PMID: 23018452 DOI: 10.1159/000341919] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/16/2012] [Indexed: 12/17/2022] Open
Abstract
Iron deficiency affects nearly 2 billion people worldwide, with pregnant women and young children being most severely impacted. Sustained anemia during the first year of life can cause cognitive, attention and motor deficits, which may persist despite iron supplementation. We conducted iTRAQ analyses on cerebrospinal fluid (CSF) from infant monkeys (Macaca mulatta) to identify differential protein expression associated with early iron deficiency. CSF was collected from 5 iron-sufficient and 8 iron-deficient anemic monkeys at weaning age (6-7 months) and again at 12-14 months. Despite consumption of iron-fortified food after weaning, which restored hematological indices into the normal range, expression of 5 proteins in the CSF remained altered. Most of the proteins identified are involved in neurite outgrowth, migration or synapse formation. The results reveal novel ways in which iron deficiency undermines brain growth and results in aberrant neuronal migration and connections. Taken together with gene expression data from rodent models of iron deficiency, we conclude that significant alterations in neuroconnectivity occur in the iron-deficient brain, which may persist even after resolution of the hematological anemia. The compromised brain infrastructure could account for observations of behavioral deficits in children during and after the period of anemia.
Collapse
|
7
|
Lewis EC. Expanding the clinical indications for α(1)-antitrypsin therapy. Mol Med 2012; 18:957-70. [PMID: 22634722 DOI: 10.2119/molmed.2011.00196] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 05/16/2012] [Indexed: 12/13/2022] Open
Abstract
α(1)-Antitrypsin (AAT) is a 52-kDa circulating serine protease inhibitor. Production of AAT by the liver maintains 0.9-1.75 mg/mL circulating levels. During acute-phase responses, circulating AAT levels increase more than fourfold. In individuals with one of several inherited mutations in AAT, low circulating levels increase the risk for lung, liver and pancreatic destructive diseases, particularly emphysema. These individuals are treated with lifelong weekly infusions of human plasma-derived AAT. An increasing amount of evidence appears to suggest that AAT possesses not only the ability to inhibit serine proteases, such as elastase and proteinase-3 (PR-3), but also to exert antiinflammatory and tissue-protective effects independent of protease inhibition. AAT modifies dendritic cell maturation and promotes T regulatory cell differentiation, induces interleukin (IL)-1 receptor antagonist and IL-10 release, protects various cell types from cell death, inhibits caspases-1 and -3 activity and inhibits IL-1 production and activity. Importantly, unlike classic immunosuppressants, AAT allows undeterred isolated T-lymphocyte responses. On the basis of preclinical and clinical studies, AAT therapy for nondeficient individuals may interfere with disease progression in type 1 and type 2 diabetes, acute myocardial infarction, rheumatoid arthritis, inflammatory bowel disease, cystic fibrosis, transplant rejection, graft versus host disease and multiple sclerosis. AAT also appears to be antibacterial and an inhibitor of viral infections, such as influenza and human immunodeficiency virus (HIV), and is currently evaluated in clinical trials for type 1 diabetes, cystic fibrosis and graft versus host disease. Thus, AAT therapy appears to have advanced from replacement therapy, to a safe and potential treatment for a broad spectrum of inflammatory and immune-mediated diseases.
Collapse
Affiliation(s)
- Eli C Lewis
- Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
8
|
Luong KVQ, Nguyen LTH. The impact of thiamine treatment in the diabetes mellitus. J Clin Med Res 2012; 4:153-60. [PMID: 22719800 PMCID: PMC3376872 DOI: 10.4021/jocmr890w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2012] [Indexed: 01/19/2023] Open
Abstract
Thiamine acts as a coenzyme for transketolase (Tk) and for the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes, enzymes which play a fundamental role for intracellular glucose metabolism. The relationship between thiamine and diabetes mellitus (DM) has been reported in the literature. Thiamine levels and thiamine-dependent enzyme activities have been reduced in DM. Genetic studies provide opportunity to link the relationship between thiamine and DM (such as Tk, SLC19A2 gene, transcription factor Sp1, α-1-antitrypsin, and p53). Thiamine and its derivatives have been demonstrated to prevent the activation of the biochemical pathways (increased flux through the polyol pathway, formation of advanced glycation end-products, activation of protein kinase C, and increased flux through the hexosamine biosynthesis pathway) induced by hyperglycemia in DM.Thiamine definitively has a role in the diabetic endothelial vascular diseases (micro and macroangiopathy), lipid profile, retinopathy, nephropathy, cardiopathy, and neuropathy.
Collapse
|
9
|
|
10
|
Microheterogeneity of some serum glycoproteins in neurodegenerative diseases. J Neurol Sci 2012; 314:20-5. [DOI: 10.1016/j.jns.2011.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/26/2011] [Accepted: 11/02/2011] [Indexed: 11/16/2022]
|
11
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia in elderly individuals and is associated with progressive neurodegeneration of the human neocortex. Thiamine levels and the activity of thiamine-dependent enzymes are reduced in the brains and peripheral tissues of patients with AD. Genetic studies have provided the opportunity to determine what proteins link thiamine to AD pathology (ie, transketolase, apolipoprotein E, α-1-antitrypsin, pyruvate dehydrogenase complex, p53, glycogen synthetase kinase-3β, c-Fos gene, the Sp1 promoter gene, and the poly(ADP-ribosyl) polymerase-1 gene). We reviewed the association between histopathogenesis and neurotransmitters to understand the relationship between thiamine and AD pathology. Oral thiamine trials have been shown to improve the cognitive function of patients with AD; however, absorption of thiamine is poor in elderly individuals. In the early stage of thiamine-deficient encephalopathy (Wernicke's encephalopathy), however, parental thiamine has been used successfully. Therefore, further studies are needed to determine the benefits of using parental thiamine as a treatment for AD.
Collapse
|
12
|
Greene CM, Hassan T, Molloy K, McElvaney NG. The role of proteases, endoplasmic reticulum stress and SERPINA1 heterozygosity in lung disease and α-1 anti-trypsin deficiency. Expert Rev Respir Med 2011; 5:395-411. [PMID: 21702661 DOI: 10.1586/ers.11.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine proteinase inhibitor α-1 anti-trypsin (AAT) provides an antiprotease protective screen throughout the body. Mutations in the AAT gene (SERPINA1) that lead to deficiency in AAT are associated with chronic obstructive pulmonary diseases. The Z mutation encodes a misfolded variant of AAT that is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum of hepatocytes and other AAT-producing cells. Until recently, it was thought that loss of antiprotease function was the major cause of ZAAT-related lung disease. However, the contribution of gain-of-function effects is now being recognized. Here we describe how both loss- and gain-of-function effects can contribute to ZAAT-related lung disease. In addition, we explore how SERPINA1 heterozygosity could contribute to smoking-induced chronic obstructive pulmonary diseases and consider the consequences.
Collapse
Affiliation(s)
- Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | | | | | |
Collapse
|
13
|
Kelly E, Greene CM, Carroll TP, McElvaney NG, O’Neill SJ. Alpha-1 antitrypsin deficiency. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.rmedc.2011.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Is PiSS Alpha-1 Antitrypsin Deficiency Associated with Disease? Pulm Med 2010; 2010:570679. [PMID: 21687342 PMCID: PMC3099463 DOI: 10.1155/2010/570679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/22/2010] [Accepted: 05/08/2010] [Indexed: 11/18/2022] Open
Abstract
Background. Alpha-1 antitrypsin deficiency (AAT) is an inherited condition that predisposes to lung and/or liver disease. Objective. The current study examined the clinical features of the PiSS genotype. Methods. Nineteen study participants (PiSS) and 29 matched control participants (PiMM) were telephone interviewed using a standardized questionnaire. Demographic features, cigarette smoking, vocation, medication history, and clinical diagnoses were compared. Statistical analysis was performed. Finally, a comprehensive literature review was performed by two investigators. Results. 12/19 (63.2%) study participants reported the presence of lung and/or liver disease compared to 12/29 (41.4%) control participants. There trended toward having a higher frequency of medication allergies in the study population (42.11% versus 20.69%). Conclusions. The PiSS genotype was associated with a similar incidence of obstructive lung disease to controls. Selective bias intrinsic in testing for AAT deficiency and the rarity of the PiSS genotype will make future study of this association dependent on population-based tests.
Collapse
|
15
|
Kelly E, Greene CM, Carroll TP, McElvaney NG, O'Neill SJ. Alpha-1 antitrypsin deficiency. Respir Med 2010; 104:763-72. [PMID: 20303723 DOI: 10.1016/j.rmed.2010.01.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 01/22/2010] [Accepted: 01/24/2010] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To review the topic of alpha-1 antitrypsin (AAT) deficiency. METHOD Narrative literature review. RESULTS Much work has been carried out on this condition with many questions being answered but still further questions remain. DISCUSSION AND CONCLUSIONS AAT deficiency is an autosomal co-dominantly inherited disease which affects the lungs and liver predominantly. The clinical manifestations, prevalence, genetics, molecular pathophysiology, screening and treatment recommendations are summarised in this review.
Collapse
Affiliation(s)
- Emer Kelly
- Department of Respiratory Research, Royal College of Surgeons in Ireland, Beaumont Hospital, Education Research Building, Beaumont Road, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
16
|
Bibliography. Current world literature. Nutrition and metabolism. Curr Opin Lipidol 2009; 20:63-72. [PMID: 19106709 DOI: 10.1097/mol.0b013e32832402a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|