1
|
Wang Y, Wu S, Li Q, Lang W, Li W, Jiang X, Wan Z, Sun H, Wang H. Salsolinol Induces Parkinson's Disease Through Activating NLRP3-Dependent Pyroptosis and the Neuroprotective Effect of Acteoside. Neurotox Res 2022; 40:1948-1962. [PMID: 36454451 DOI: 10.1007/s12640-022-00608-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Endogenous neurotoxin 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroiso-quinoline (Salsolinol, SAL) is a dopamine metabolite that is toxic to dopaminergic neurons in vitro and in vivo, and is involved in the pathogenesis of Parkinson's disease (PD). However, the molecular mechanism by which SAL induces neurotoxicity in PD remains challenging for future investigations. This study found that SAL induced neurotoxicity in SH-SY5Y cells and mice. RNA sequencing (RNAseq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to detect differentially expressed genes in SAL-treated SH-SY5Y cells. We found that NLR family pyrin domain-containing 3 (NLRP3)-dependent pyroptosis was enriched by SAL, which was validated by in vitro and in vivo SAL models. Further, NLRP3 inflammasome-related genes (ASC, NLRP3, active caspase 1, IL-1β, and IL-18) were increased at the mRNA and protein level. Acteoside mitigates SAL-induced neurotoxicity by inhibiting NLRP3 inflammasome-related pyroptosis in in vitro and in vivo PD models. In summary, the present study suggests for the first time that NLRP3-dependent pyroptosis plays a role in the pathogenesis of SAL-induced PD, and acteoside mitigates SAL-induced pyroptosis-dependent neurotoxicity in in vitro and in vivo PD models. The present results demonstrated a new mechanism whereby SAL mediates neurotoxicity by activating NLRP3-dependent pyroptosis, further highlighting SAL-induced pyroptosis-dependent neurotoxicity as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, 024005, China
| | - Weihong Lang
- Department of Psychological Medicine, The Affiliated Hospital of Chifeng University, Chifeng, 024005, People's Republic of China
| | - Wenjing Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, 024005, China
| | - Xiaodong Jiang
- Department of Anatomy, College of Basic Medicine, Chifeng University Health Science Center, Chifeng, 024005, China
| | - Zhirong Wan
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Huiyan Sun
- Chifeng University Health Science Center, Chifeng, 024000, China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
2
|
Zheng X, Chen X, Guo M, Ali S, Huang Y, Sun F, Liu K, Chen Z, Deng Y, Zhong R. Changes in salsolinol production and salsolinol synthase activity in Parkinson’s disease model. Neurosci Lett 2018; 673:39-43. [DOI: 10.1016/j.neulet.2018.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 01/09/2023]
|
3
|
Kurnik-Łucka M, Panula P, Bugajski A, Gil K. Salsolinol: an Unintelligible and Double-Faced Molecule-Lessons Learned from In Vivo and In Vitro Experiments. Neurotox Res 2017; 33:485-514. [PMID: 29063289 PMCID: PMC5766726 DOI: 10.1007/s12640-017-9818-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/19/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a tetrahydroisoquinoline derivative whose presence in humans was first detected in the urine of Parkinsonian patients on l-DOPA (l-dihydroxyphenylalanine) medication. Thus far, multiple hypotheses regarding its physiological/pathophysiological roles have been proposed, especially related to Parkinson’s disease or alcohol addiction. The aim of this review was to outline studies related to salsolinol, with special focus on in vivo and in vitro experimental models. To begin with, the chemical structure of salsolinol together with its biochemical implications and the role in neurotransmission are discussed. Numerous experimental studies are summarized in tables and the most relevant ones are stressed. Finally, the ability of salsolinol to cross the blood–brain barrier and its possible double-faced neurobiological potential are reviewed.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland.
| | - Pertti Panula
- Department of Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Andrzej Bugajski
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| |
Collapse
|
4
|
Ibáñez C, Simó C, Barupal DK, Fiehn O, Kivipelto M, Cedazo-Mínguez A, Cifuentes A. A new metabolomic workflow for early detection of Alzheimer's disease. J Chromatogr A 2013; 1302:65-71. [DOI: 10.1016/j.chroma.2013.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 11/16/2022]
|