1
|
Rajput S, Jain S, Dash D, Gupta N, Rajpoot R, Upadhyaya CP, Khan ML, Koiri RK. Role of cyanotoxins in the development and promotion of cancer. Toxicol Rep 2024; 13:101798. [PMID: 39606777 PMCID: PMC11600067 DOI: 10.1016/j.toxrep.2024.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Cyanotoxins are primarily produced by different species of cyanobacteria, also known as blue-green algae, and have appeared to be environmental poisons that have various toxic effects on animal health, including humans. Cyanotoxins have been linked to the development and promotion of multiple cancers in recent studies. Important cyanotoxins, such as microcystins, nodularins, and cylindrospermopsin, have been found to play significant roles in developing and promoting various cancers. These toxins are generally responsible for oxidative stress, DNA damage, and disrupt cellular signaling pathways thus the development of cancers in various cells. Cancer is a multistep process caused by multiple mutations in normal cells. Microcystin-LR inhibits protein phosphatases (PP1 and PP2A), which leads to abnormal cell proliferation and tumor development. Similar inhibition of PP1 and PP2A is shown by nodularin, and in fact, their mechanism of carcinogenesis is the same as that of microcystins to some extent. Cylindrospermopsin inhibits protein synthesis and thus has genotoxic effects and may promote the development of cancer. Anatoxin-a and saxitoxins are well-known neurotoxins but, are thought to have indirect carcinogenic effects based on the fact that they can induce oxidative stress and DNA damage in cells by producing reactive oxygen species, thus further studies are needed to fully elucidate their role in the development and promotion of cancer. This review provides a detailed account of how different cyanotoxins play a role in the development and promotion of cancer.
Collapse
Affiliation(s)
- Siddharth Rajput
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Shruti Jain
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Debabrata Dash
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Nidhi Gupta
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Roshni Rajpoot
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Chandrama Prakash Upadhyaya
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Mohammed Latif Khan
- Department of Botany, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| |
Collapse
|
2
|
Lopicic S, Svirčev Z, Palanački Malešević T, Kopitović A, Ivanovska A, Meriluoto J. Environmental Neurotoxin β- N-Methylamino-L-alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases. Microorganisms 2022; 10:2418. [PMID: 36557671 PMCID: PMC9781992 DOI: 10.3390/microorganisms10122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Faculty of Medicine, University of Belgrade, Dr Subotića Starijeg 8, 11000 Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tamara Palanački Malešević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Aleksandar Kopitović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
3
|
Koksharova OA, Safronova NA. Non-Proteinogenic Amino Acid β-N-Methylamino-L-Alanine (BMAA): Bioactivity and Ecological Significance. Toxins (Basel) 2022; 14:539. [PMID: 36006201 PMCID: PMC9414260 DOI: 10.3390/toxins14080539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Research interest in a non-protein amino acid β-N-methylamino-L-alanine (BMAA) arose due to the discovery of a connection between exposure to BMAA and the occurrence of neurodegenerative diseases. Previous reviews on this topic either considered BMAA as a risk factor for neurodegenerative diseases or focused on the problems of detecting BMAA in various environmental samples. Our review is devoted to a wide range of fundamental biological problems related to BMAA, including the molecular mechanisms of biological activity of BMAA and the complex relationships between producers of BMAA and the environment in various natural ecosystems. At the beginning, we briefly recall the most important facts about the producers of BMAA (cyanobacteria, microalgae, and bacteria), the pathways of BMAA biosynthesis, and reliable methods of identification of BMAA. The main distinctive feature of our review is a detailed examination of the molecular mechanisms underlying the toxicity of BMAA to living cells. A brand new aspect, not previously discussed in any reviews, is the effect of BMAA on cyanobacterial cells. These recent studies, conducted using transcriptomics and proteomics, revealed potent regulatory effects of BMAA on the basic metabolism and cell development of these ancient photoautotrophic prokaryotes. Exogenous BMAA strongly influences cell differentiation and primary metabolic processes in cyanobacteria, such as nitrogen fixation, photosynthesis, carbon fixation, and various biosynthetic processes involving 2-oxoglutarate and glutamate. Cyanobacteria were found to be more sensitive to exogenous BMAA under nitrogen-limited growth conditions. We suggest a hypothesis that this toxic diaminoacid can be used by phytoplankton organisms as a possible allelopathic tool for controlling the population of cyanobacterial cells during a period of intense competition for nitrogen and other resources in various ecosystems.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Nina A. Safronova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
4
|
Cabrita A, Medeiros AM, Pereira T, Rodrigues AS, Kranendonk M, Mendes CS. Motor dysfunction in Drosophila melanogaster as a biomarker for developmental neurotoxicity. iScience 2022; 25:104541. [PMID: 35769875 PMCID: PMC9234254 DOI: 10.1016/j.isci.2022.104541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/30/2021] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Adequate alternatives to conventional animal testing are needed to study developmental neurotoxicity (DNT). Here, we used kinematic analysis to assess DNT of known (toluene (TOL) and chlorpyrifos (CPS)) and putative (β-N-methylamino-L-alanine (BMAA)) neurotoxic compounds. Drosophila melanogaster was exposed to these compounds during development and evaluated for survival and adult kinematic parameters using the FlyWalker system, a kinematics evaluation method. At concentrations that do not induce general toxicity, the solvent DMSO had a significant effect on kinematic parameters. Moreover, while TOL did not significantly induce lethality or kinematic dysfunction, CPS not only induced developmental lethality but also significantly impaired coordination in comparison to DMSO. Interestingly, BMAA, which was not lethal during development, induced motor decay in young adult animals, phenotypically resembling aged flies, an effect later attenuated upon aging. Furthermore, BMAA induced abnormal development of leg motor neuron projections. Our results suggest that our kinematic approach can assess potential DNT of chemical compounds. Alternatives to mammalian testing are needed to detect developmental neurotoxicity The pesticide chlorpyrifos causes partial lethality and motor dysfunction Non-lethal levels of BMAA induce motor dysfunction in a dose-dependent manner Kinematic profiling of adult Drosophila can identify developmental neurotoxicity
Collapse
Affiliation(s)
- Ana Cabrita
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alexandra M. Medeiros
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Telmo Pereira
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - António Sebastião Rodrigues
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Corresponding author
| | - César S. Mendes
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Corresponding author
| |
Collapse
|
5
|
Courtier A, Potheret D, Giannoni P. Environmental bacteria as triggers to brain disease: Possible mechanisms of toxicity and associated human risk. Life Sci 2022; 304:120689. [DOI: 10.1016/j.lfs.2022.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
|
6
|
Kazemi Shariat Panahi H, Dehhaghi M, Heng B, Lane DJR, Bush AI, Guillemin GJ, Tan VX. Neuropathological Mechanisms of β-N-Methylamino-L-Alanine (BMAA) with a Focus on Iron Overload and Ferroptosis. Neurotox Res 2022; 40:614-635. [PMID: 35023054 DOI: 10.1007/s12640-021-00455-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
The incidence of neurodegenerative diseases and cyanobacterial blooms is concomitantly increasing worldwide. The cyanotoxin β-N-methylamino-L-alanine (BMAA) is produced by most of the Cyanobacteria spp. This cyanotoxin is described as a potential environmental etiology factor for some sporadic neurodegenerative diseases. Climate change and eutrophication significantly increase the frequency and intensity of cyanobacterial bloom in water bodies. This review evaluates different neuropathological mechanisms of BMAA at molecular and cellular levels and compares the related studies to provide some useful recommendations. Additionally, the structure and properties of BMAA as well as its microbial origin, especially by gut bacteria, are also briefly covered. Unlike previous reviews, we hypothesize the possible neurotoxic mechanism of BMAA through iron overload. We also discuss the involvement of BMAA in excitotoxicity, TAR DNA-binding protein 43 (TDP-43) translocation and accumulation, tauopathy, and other protein misincorporation and misfolding.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
- PANDIS.Org, Bendigo, Australia.
| | - Vanessa X Tan
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
| |
Collapse
|
7
|
Samardzic K, Steele JR, Violi JP, Colville A, Mitrovic SM, Rodgers KJ. Toxicity and bioaccumulation of two non-protein amino acids synthesised by cyanobacteria, β-N-Methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB), on a crop plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111515. [PMID: 33099142 DOI: 10.1016/j.ecoenv.2020.111515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
In order to study the toxicity of the cyanobacterial non-protein amino acids (NPAAs) L-β-N-methylamino-L-alanine (BMAA) and its structural isomer L-2,4-diaminobutyric acid (DAB) in the forage crop plant alfalfa (Medicago sativa), seedlings were exposed to NPAA-containing media for four days. Root growth was significantly inhibited by both treatments. The content of derivatised free and protein-bound BMAA and DAB in seedlings was then analysed by LC-MS/MS. Both NPAAs were detected in free and protein-bound fractions with higher levels detected in free fractions. Compared to shoots, there was approximately tenfold more BMAA and DAB in alfalfa roots. These results suggest that NPAAs might be taken up into crop plants from contaminated irrigation water and enter the food chain. This may present an exposure pathway for NPAAs in humans.
Collapse
Affiliation(s)
- Kate Samardzic
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia.
| | - Joel R Steele
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Jake P Violi
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Anne Colville
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Simon M Mitrovic
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
8
|
Maeso C, Morales C, Obrador R, Abarca E, Carrera I. Presumptive Cycad Toxicosis in a Dog. Clinical and Magnetic Resonance Imaging Findings: A Case Report. Front Vet Sci 2020; 7:468. [PMID: 32923464 PMCID: PMC7456943 DOI: 10.3389/fvets.2020.00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
Cases of cycad toxicosis have been described in dogs that have presented with gastrointestinal, hematologic, hepatic, neurological, and carcinogenic signs. This case report describes brain magnetic resonance imaging (MRI) lesions in a dog with gastrointestinal and neurological signs secondary to cycad toxicosis. A 5-year-old neutered female Jack Russell terrier presented with a 2-days history of gastroenteric signs, progressive generalized tremors, and altered mentation after possible ingestion of Cycad revoluta. Neurologic examinations revealed disorientation, a wide-based stance, severe spasticity of the four limbs, intention tremors, severe cerebellar ataxia, decreased postural reactions in all four limbs, and intermittent decreased menace response in both eyes—all of which are consistent with a multifocal intracranial disorder involving the forebrain and cerebellum. A brain MRI showed diffuse/ill-defined, intra-axial bilateral and symmetrical changes, predominantly affecting the white matter of the cerebral hemispheres, thalamus, hippocampus, and cerebellum. A presumptive diagnosis of toxic-metabolic encephalopathy was made. Medical management of the clinical signs was performed, and the dog was discharged 7 days after presentation with no neurological abnormalities. Two and 8 weeks later, complete blood count (CBC), chemistry, electrolytes, and 8 weeks later brain MRI were performed, revealing no abnormalities. To the best of the authors' knowledge, this is the first case report describing lesions detected by brain MRI secondary to cycad toxicosis as well as a complete resolution of brain lesions on a follow-up MRI 8 weeks later.
Collapse
Affiliation(s)
- Christian Maeso
- Neurology Department, Ars Veterinaria Hospital, Barcelona, Spain
| | - Carles Morales
- Neurology Department, Ars Veterinaria Hospital, Barcelona, Spain
| | - Rafael Obrador
- Critical Care Department, Ars Veterinaria Hospital, Barcelona, Spain
| | - Eva Abarca
- Ophthalmology Department, Ars Veterinaria Hospital, Barcelona, Spain
| | - Inés Carrera
- Diagnostic Imaging Department, Willows Veterinary Hospital, West Midlands, United Kingdom
| |
Collapse
|
9
|
Buratti E. Targeting TDP-43 proteinopathy with drugs and drug-like small molecules. Br J Pharmacol 2020; 178:1298-1315. [PMID: 32469420 DOI: 10.1111/bph.15148] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Following the discovery of the involvement of the ribonucleoprotein TDP-43 in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), a major research focus has been to develop treatments that can prevent or alleviate these disease conditions. One pharmacological approach has been to use TDP-43-based disease models to test small molecules and drugs already known to have some therapeutic effect in a variety of neurodegenerative conditions. In parallel, various disease models have been used to perform high-throughput screens of drugs and small compound libraries. The aim of this review will be to provide a general overview of the compounds that have been described to alter pathological characteristics of TDP-43. These include expression levels, cytoplasmic mis-localization, post-translational modifications, cleavage, stress granule recruitment and aggregation. In parallel, this review will also address the use of compounds that modify the autophagic/proteasome systems that are known to target TDP-43 misfolding and aggregation. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
10
|
Ash PEA, Dhawan U, Boudeau S, Lei S, Carlomagno Y, Knobel M, Al Mohanna LFA, Boomhower SR, Newland MC, Sherr DH, Wolozin B. Heavy Metal Neurotoxicants Induce ALS-Linked TDP-43 Pathology. Toxicol Sci 2019; 167:105-115. [PMID: 30371865 PMCID: PMC6317426 DOI: 10.1093/toxsci/kfy267] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heavy metals, such as lead, mercury, and selenium, have been epidemiologically linked with a risk of ALS, but a molecular mechanism proving the connection has not been shown. A screen of putative developmental neurotoxins demonstrated that heavy metals (lead, mercury, and tin) trigger accumulation of TDP-43 into nuclear granules with concomitant loss of diffuse nuclear TDP-43. Lead (Pb) and methyl mercury (MeHg) disrupt the homeostasis of TDP-43 in neurons, resulting in increased levels of transcript and increased splicing activity of TDP-43. TDP-43 homeostasis is tightly regulated, and positively or negatively altering its splicing-suppressive activity has been shown to be deleterious to neurons. These changes are associated with the liquid-liquid phase separation of TDP-43 into nuclear bodies. We show that lead directly facilitates phase separation of TDP-43 in a dose-dependent manner in vitro, possibly explaining the means by which lead treatment results in neuronal nuclear granules. Metal toxicants also triggered the accumulation of insoluble TDP-43 in cultured cells and in the cortices of exposed mice. These results provide novel evidence of a direct mechanistic link between heavy metals, which are a commonly cited environmental risk of ALS, and molecular changes in TDP-43, the primary pathological protein accumulating in ALS.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Uma Dhawan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Shuwen Lei
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Yari Carlomagno
- Neuroscience Division, Mayo Clinic, Jacksonville, Florida 32224
| | - Mark Knobel
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Louloua F A Al Mohanna
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Steven R Boomhower
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | | | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
11
|
β-N-methylamino-L-alanine (BMAA) suppresses cell cycle progression of non-neuronal cells. Sci Rep 2018; 8:17995. [PMID: 30573743 PMCID: PMC6301973 DOI: 10.1038/s41598-018-36418-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022] Open
Abstract
β-N-methylamino-L-alanine (BMAA), a natural non-proteinaceous amino acid, is a neurotoxin produced by a wide range of cyanobacteria living in various environments. BMAA is a candidate environmental risk factor for neurodegenerative diseases such as amyotrophic lateral sclerosis and Parkinson-dementia complex. Although BMAA is known to exhibit weak neuronal excitotoxicity via glutamate receptors, the underlying mechanism of toxicity has yet to be fully elucidated. To examine the glutamate receptor-independent toxicity of BMAA, we investigated the effects of BMAA in non-neuronal cell lines. BMAA potently suppressed the cell cycle progression of NIH3T3 cells at the G1/S checkpoint without inducing plasma membrane damage, apoptosis, or overproduction of reactive oxygen species, which were previously reported for neurons and neuroblastoma cells treated with BMAA. We found no evidence that activation of glutamate receptors was involved in the suppression of the G1/S transition by BMAA. Our results indicate that BMAA affects cellular functions, such as the division of non-neuronal cells, through glutamate receptor-independent mechanisms.
Collapse
|
12
|
Pierozan P, Andersson M, Brandt I, Karlsson O. The environmental neurotoxin β-N-methylamino-L-alanine inhibits melatonin synthesis in primary pinealocytes and a rat model. J Pineal Res 2018. [PMID: 29528516 DOI: 10.1111/jpi.12488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is a glutamate receptor agonist that can induce oxidative stress and has been implicated as a possible risk factor for neurodegenerative disease. Detection of BMAA in mussels, crustaceans, and fish illustrates that the sources of human exposure to this toxin are more abundant than previously anticipated. The aim of this study was to determine uptake of BMAA in the pineal gland and subsequent effects on melatonin production in primary pinealocyte cultures and a rat model. Autoradiographic imaging of 10-day-old male rats revealed a high and selective uptake in the pineal gland at 30 minutes to 24 hours after 14 C-L-BMAA administration (0.68 mg/kg). Primary pinealocyte cultures exposed to 0.05-3 mmol/L BMAA showed a 57%-93% decrease in melatonin synthesis in vitro. Both the metabotropic glutamate receptor 3 (mGluR3) antagonist Ly341495 and the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate prevented the decrease in melatonin secretion, suggesting that BMAA inhibits melatonin synthesis by mGluR3 activation and PKC inhibition. Serum analysis revealed a 45% decrease in melatonin concentration in neonatal rats assessed 2 weeks after BMAA administration (460 mg/kg) and confirmed an inhibition of melatonin synthesis in vivo. Given that melatonin is a most important neuroprotective molecule in the brain, the etiology of BMAA-induced neurodegeneration may include mechanisms beyond direct excitotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Paula Pierozan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Marie Andersson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Ingvar Brandt
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Scott LL, Downing TG. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases. Toxins (Basel) 2017; 10:E22. [PMID: 29286334 PMCID: PMC5793109 DOI: 10.3390/toxins10010022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Although cyanobacterial β-N-methylamino-l-alanine (BMAA) has been implicated in the development of Alzheimer's Disease (AD), Parkinson's Disease (PD) and Amyotrophic Lateral Sclerosis (ALS), no BMAA animal model has reproduced all the neuropathology typically associated with these neurodegenerative diseases. We present here a neonatal BMAA model that causes β-amyloid deposition, neurofibrillary tangles of hyper-phosphorylated tau, TDP-43 inclusions, Lewy bodies, microbleeds and microgliosis as well as severe neuronal loss in the hippocampus, striatum, substantia nigra pars compacta, and ventral horn of the spinal cord in rats following a single BMAA exposure. We also report here that BMAA exposure on particularly PND3, but also PND4 and 5, the critical period of neurogenesis in the rodent brain, is substantially more toxic than exposure to BMAA on G14, PND6, 7 and 10 which suggests that BMAA could potentially interfere with neonatal neurogenesis in rats. The observed selective toxicity of BMAA during neurogenesis and, in particular, the observed pattern of neuronal loss observed in BMAA-exposed rats suggest that BMAA elicits its effect by altering dopamine and/or serotonin signaling in rats.
Collapse
Affiliation(s)
- Laura Louise Scott
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| | - Timothy Grant Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| |
Collapse
|
14
|
Cellular and Molecular Aspects of the β-N-Methylamino-l-alanine (BMAA) Mode of Action within the Neurodegenerative Pathway: Facts and Controversy. Toxins (Basel) 2017; 10:toxins10010006. [PMID: 29271898 PMCID: PMC5793093 DOI: 10.3390/toxins10010006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
The implication of the cyanotoxin β-N-methylamino-l-alanine (BMAA) in long-lasting neurodegenerative disorders is still a matter of controversy. It has been alleged that chronic ingestion of BMAA through the food chain could be a causative agent of amyotrophic lateral sclerosis (ALS) and several related pathologies including Parkinson syndrome. Both in vitro and in vivo studies of the BMAA mode of action have focused on different molecular targets, demonstrating its toxicity to neuronal cells, especially motoneurons, and linking it to human neurodegenerative diseases. Historically, the hypothesis of BMAA-induced excitotoxicity following the stimulation of glutamate receptors has been established. However, in this paradigm, most studies have shown acute, rather than chronic effects of BMAA. More recently, the interaction of this toxin with neuromelanin, a pigment present in the nervous system, has opened a new research perspective. The issues raised by this toxin are related to its kinetics of action, and its possible incorporation into cellular proteins. It appears that BMAA neurotoxic activity involves different targets through several mechanisms known to favour the development of neurodegenerative processes.
Collapse
|
15
|
Nunn PB. 50 years of research on α-amino-β-methylaminopropionic acid (β-methylaminoalanine). PHYTOCHEMISTRY 2017; 144:271-281. [PMID: 29102875 DOI: 10.1016/j.phytochem.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The isolation of α-amino-β-methylaminopropionic acid from seeds of Cycas circinalis (now C. micronesica Hill) resulted from a purposeful attempt to establish the cause of the profound neurological disease, amyotrophic lateral sclerosis/parkinsonism/dementia, that existed in high frequency amongst the inhabitants of the western Pacific island of Guam (Guam ALS/PD). In the 50 years since its discovery the amino acid has been a stimulus, and sometimes a subject of mockery, for generations of scientists in a remarkably diverse range of subject areas. The number of citations of the original paper has risen in the five decades from a few to 120 within the decade 2007-2016 and continues at a high rate into the next decade. The reasons for this remarkable outcome are discussed and examples from the literature are used to illustrate the wide range of scientific interest that the original paper generated.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, Hampshire PO1 2DT, UK.
| |
Collapse
|
16
|
Ash PEA, Stanford EA, Al Abdulatif A, Ramirez-Cardenas A, Ballance HI, Boudeau S, Jeh A, Murithi JM, Tripodis Y, Murphy GJ, Sherr DH, Wolozin B. Dioxins and related environmental contaminants increase TDP-43 levels. Mol Neurodegener 2017; 12:35. [PMID: 28476168 PMCID: PMC5420162 DOI: 10.1186/s13024-017-0177-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative condition that is characterized by progressive loss of motor neurons and the accumulation of aggregated TAR DNA Binding Protein-43 (TDP-43, gene: TARDBP). Increasing evidence indicates that environmental factors contribute to the risk of ALS. Dioxins, related planar polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants that activate the aryl hydrocarbon receptor (AHR), a ligand-activated, PAS family transcription factor. Recently, exposure to these toxicants was identified as a risk factor for ALS. Methods We examined levels of TDP-43 reporter activity, transcript and protein. Quantification was done using cell lines, induced pluripotent stem cells (iPSCs) and mouse brain. The target samples were treated with AHR agonists, including 6-Formylindolo[3,2-b]carbazole (FICZ, a potential endogenous ligand, 2,3,7,8-tetrachlorodibenzo(p)dioxin, and benzo(a)pyrene, an abundant carcinogen in cigarette smoke). The action of the agonists was inhibited by concomitant addition of AHR antagonists or by AHR-specific shRNA. Results We now report that AHR agonists induce up to a 3-fold increase in TDP-43 protein in human neuronal cell lines (BE-M17 cells), motor neuron differentiated iPSCs, and in murine brain. Chronic treatment with AHR agonists elicits over 2-fold accumulation of soluble and insoluble TDP-43, primarily because of reduced TDP-43 catabolism. AHR antagonists or AHR knockdown inhibits agonist-induced increases in TDP-43 protein and TARDBP transcription demonstrating that the ligands act through the AHR. Conclusions These results provide the first evidence that environmental AHR ligands increase TDP-43, which is the principle pathological protein associated with ALS. These results suggest novel molecular mechanisms through which a variety of prevalent environmental factors might directly contribute to ALS. The widespread distribution of dioxins, PCBs and PAHs is considered to be a risk factor for cancer and autoimmune diseases, but could also be a significant public health concern for ALS. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0177-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - Elizabeth A Stanford
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Ali Al Abdulatif
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | | | - Heather I Ballance
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - Samantha Boudeau
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - Amanda Jeh
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA
| | - James M Murithi
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - George J Murphy
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Benjamin Wolozin
- Department of Pharmacology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA. .,Department of Neurology, Boston University School of Medicine, 72 East Concord St., R614, Boston, MA, 02118-2526, USA.
| |
Collapse
|
17
|
de Munck E, Palomo V, Muñoz-Sáez E, Perez DI, Gómez-Miguel B, Solas MT, Gil C, Martínez A, Arahuetes RM. Small GSK-3 Inhibitor Shows Efficacy in a Motor Neuron Disease Murine Model Modulating Autophagy. PLoS One 2016; 11:e0162723. [PMID: 27631495 PMCID: PMC5025054 DOI: 10.1371/journal.pone.0162723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron degenerative disease that has no effective treatment up to date. Drug discovery tasks have been hampered due to the lack of knowledge in its molecular etiology together with the limited animal models for research. Recently, a motor neuron disease animal model has been developed using β-N-methylamino-L-alanine (L-BMAA), a neurotoxic amino acid related to the appearing of ALS. In the present work, the neuroprotective role of VP2.51, a small heterocyclic GSK-3 inhibitor, is analysed in this novel murine model together with the analysis of autophagy. VP2.51 daily administration for two weeks, starting the first day after L-BMAA treatment, leads to total recovery of neurological symptoms and prevents the activation of autophagic processes in rats. These results show that the L-BMAA murine model can be used to test the efficacy of new drugs. In addition, the results confirm the therapeutic potential of GSK-3 inhibitors, and specially VP2.51, for the disease-modifying future treatment of motor neuron disorders like ALS.
Collapse
Affiliation(s)
- Estefanía de Munck
- Departamento de Biología Animal II, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Valle Palomo
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
| | - Emma Muñoz-Sáez
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Daniel I. Perez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
| | - Begoña Gómez-Miguel
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - M. Teresa Solas
- Departamento de Biología Celular, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
- * E-mail: (AM); (RMA)
| | - Rosa M. Arahuetes
- Departamento de Biología Animal II, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
- * E-mail: (AM); (RMA)
| |
Collapse
|
18
|
Novak M, Hercog K, Žegura B. Assessment of the mutagenic and genotoxic activity of cyanobacterial toxin beta-N-methyl-amino-L-alanine in Salmonella typhimurium. Toxicon 2016; 118:134-40. [DOI: 10.1016/j.toxicon.2016.04.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 11/26/2022]
|
19
|
Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA). Sci Rep 2016; 6:29631. [PMID: 27404450 PMCID: PMC4940735 DOI: 10.1038/srep29631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022] Open
Abstract
The non-protein amino acid β-methylamino-L-alanine (BMAA) is a neurotoxin present in microalgae and shown to accumulate in the food web. BMAA has been linked to the complex neurodegenerative disorder of Guam and to increased incidents sporadic ALS. Two main neurotoxic routes are suggested; an excitotoxic by acting as an agonist towards glutamate receptors and a metabolic by misincorporating into cellular proteins. We have used zebrafish, an increasingly used model for neurodegenerative diseases, to further identify signaling components involved in BMAA-induced toxicity. Zebrafish embryos were exposed to sub-lethal dosages of BMAA and a label-free proteomics analysis was conducted on larvae 4 days post fertilization. The exposed larvae showed no developmental abnormalities, but a reduced heart rate and increased expression of GSK3 isoforms. Search towards a reviewed database containing 2968 entries identified 480 proteins. Only 17 of these were regulated 2-fold or more in the exposed larvae. Seven of these proteins could be associated to glutamate receptor signaling and recycling. The remaining nine have all been linked to disturbance in protein homeostasis, reactive oxygen species (ROS) development or neuronal cell death. We also found that BMAA influenced the endocannabinoid system by up-regulation of fatty acid amide hydrolase (FAAH) and that FAAH inhibitor URB597 reduced the BMAA effect on heart rate and GSK3 expression.
Collapse
|