1
|
Zare Z, Shafia S, Mohammadi M. Thyroid hormone deficiency affects anxiety-related behaviors and expression of hippocampal glutamate transporters in male congenital hypothyroid rat offspring. Horm Behav 2024; 162:105548. [PMID: 38636205 DOI: 10.1016/j.yhbeh.2024.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sakineh Shafia
- Department of Physiology, Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Zare Z, Zarbakhsh S, Tehrani M, Mohammadi M. Neuroprotective Effects of Treadmill Exercise in Hippocampus of Ovariectomized and Diabetic Rats. Neuroscience 2022; 496:64-72. [PMID: 35700817 DOI: 10.1016/j.neuroscience.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
To determine detrimental effects of estrogen and insulin deficiencies on hippocampus, we examined apoptosis-induced neuronal damage and cholinergic system in ovariectomized and/or diabetic rat hippocampus. Possible neuroprotective effects of treadmill exercise were also investigated. Adult female Wistar rats were randomly divided into four groups (n = 5 rats/group) as follows: control, ovariectomized (Ovx), diabetic (Dia, streptozotocin (STZ) 60 mg/kg; i.p.), and Ovx + Dia groups. Each group was further subdivided into exercise and non-exercise groups. Animals in exercise groups were subjected to treadmill training, while those in non-exercise groups were placed on the stationary treadmill for 4 weeks (5 days/week). Apoptosis-related protein levels (i.e. Bax, Bcl-2, and caspase-3), number of survived neurons, and acetylcholinesterase (AChE) activity in the hippocampus were measured using Western blotting, Cresyl Violet staining, and Ellman assay, respectively. Both ovariectomy and diabetes increased expression of Bax and caspase-3 and decreased expression of Bcl-2 at protein levels. In addition, a significant decrease in the number of survived neurons was observed in both Ovx and Dia groups, while AChE activity was lower only in the Dia group. The Ovx + Dia group showed stronger apoptosis-induced neuropathology and inhibition of AChE activity. Treadmill exercise attenuated apoptosis-induced neuropathology in the Ovx and Dia groups and recovered AChE activity in the Dia group. Neuroprotective effects of treadmill exercise were mediated by inhibition of apoptosis. Moderate exercise protocol had no beneficial anti-apoptotic and neuroprotective effects in ovariectomized-diabetic rats.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Tehrani
- Department of Immunology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Zare Z, Zarbakhsh S, Mashhadban S, Moradgholi A, Mohammadi M. Apoptosis is involved in paraoxon-induced histological changes in rat cerebellum. Drug Chem Toxicol 2021; 45:2554-2560. [PMID: 34412520 DOI: 10.1080/01480545.2021.1966243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Acute toxicity of organophosphorus compounds is primarily caused by inhibition of acetylcholinesterase (AChE) at cholinergic synapses. The current study was designed to investigate the effects of paraoxon on histological changes as well as the role of mitochondrion-dependent apoptosis in causing this damage in the rat cerebellum. Adult male Wistar rats were intraperitoneally injected with paraoxon at 0.3, 0.7, or 1 mg/kg. Control animals were injected with corn oil as a vehicle. At 14 or 28 days after intoxication, histological changes and alterations in the expression of apoptosis-related proteins, including Bax, Bcl-2, and caspase-3, were investigated in the cerebellum using cresyl violet staining and western blotting, respectively. Findings showed the decreased thickness of both molecular and granular layers and reduction in the number of Purkinje cells in animals treated with a higher convulsive dose of paraoxon (1 mg/kg). In addition, exposure of rats to 1 mg/kg of paraoxon activated apoptosis pathway confirmed by an increase in Bax and caspase-3 and a decrease in Bcl-2 protein levels. According to our results, cerebellar histological changes and alterations in the expression of apoptosis-related proteins occur following exposure to a high convulsive dose of paraoxon and persist for a long time.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shamim Mashhadban
- Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Moradgholi
- Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Persistent proteomic changes in glutamatergic and GABAergic signaling in the amygdala of adolescent rats exposed to chlorpyrifos as juveniles. Neurotoxicology 2021; 85:234-244. [PMID: 34058248 DOI: 10.1016/j.neuro.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Chlorpyrifos (CPF) remains one of the most widely used organophosphorus insecticides (OPs) despite the concerns about its developmental neurotoxicity. Developmental exposure to CPF has long-lasting negative impacts, including abnormal emotional behaviors. These negative impacts are observed at exposure levels do not cause inhibition of acetylcholinesterase, the canonical target of OPs. Exposure to CPF at these levels inhibits the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) but it is not clear what the persistent effects of this inhibition are. To investigate this, male rat pups were exposed orally to either corn oil, 0.75 mg/kg CPF, or 0.02 mg/kg PF-04457845 (PF; a specific inhibitor of FAAH) daily from postnatal day 10 (PND10) - PND16. This dosage of CPF does not inhibit brain cholinesterase activity but inhibits FAAH activity. On PND38 (adolescence), the protein expression in the amygdala was determined using a label-free shotgun proteomic approach. The analysis of control vs CPF and control vs PF led to the identification of 44 and 142 differentially regulated proteins, respectively. Gene ontology enrichment analysis revealed that most of the proteins with altered expression in both CPF and PF treatment groups were localized in the synapse-related regions, such as presynaptic membrane, postsynaptic density, and synaptic vesicle. The different biological processes affected by both treatment groups included persistent synaptic potentiation, glutamate receptor signaling, protein phosphorylation, and chemical synaptic transmission. These results also indicated disturbances in the balance between glutamatergic (↓ Glutamate AMPA receptor 2, ↓ Excitatory amino acid transporter 2, and ↑ vesicular glutamate transporter 2) and GABAergic signaling (↑ GABA transporter 3 and ↑ glutamate decarboxylase 2). This imbalance could play a role in the abnormal emotional behavior that we have previously reported. These results suggest that there is a similar pattern of expression between CPF and PF, and both these chemicals can persistently alter emotional behavior as a consequence of inhibition of FAAH.
Collapse
|
5
|
Zare Z, Zarbakhsh S, Tehrani M, Mohammadi M. Paraoxon-induced damage in rat hippocampus is associated with alterations in the expression of apoptosis-related proteins. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104580. [PMID: 32448426 DOI: 10.1016/j.pestbp.2020.104580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/02/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
To determine the possible role of apoptosis in the development of paraoxon-induced brain damage, we evaluated expression of apoptosis-related proteins, the extent of neuronal damage, and activation of astrocytes in rat hippocampus. Adult male Wistar rats were intraperitoneally injected with one of three doses of paraoxon (0.3, 0.7, or 1 mg/kg) or corn oil (vehicle). After 14 or 28 days, expression of apoptosis-related proteins, including B-cell leukemia/lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), and caspase-3, as well as the number of neurons and glial fibrillary acidic protein (GFAP) positive cells in hippocampus were examined by western blot, cresyl blue staining, and immunohistochemistry, respectively. After 14 and 28 days, Bax and caspase-3 proteins were significantly increased in rats receiving 0.7 and 1 mg/kg of paraoxon. A significant decrease in Bcl-2 protein levels was also observed in 0.7 and 1 mg/kg groups after 14 days and in 1 mg/kg group after 28 days. Animals treated with 1 mg/kg of paraoxon showed a significant decrease in the number of neurons in the CA1 area. Also, those treated with 0.7 and 1 mg/kg of paraoxon showed an increase in the number of GFAP positive cells in both CA1 and CA3 areas as well as a significant decrease in survived neurons in the CA3 area. Our results indicated that neuronal damage induced by convulsive doses of paraoxon in rat hippocampus is mediated in part through apoptosis mechanism. Activation of astrocytes might lead to reduced extent of damage and damage and consequently increased neuronal survival.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Tehrani
- Department of Immunology, Gastrointestinal Cancer Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Zare Z, Tehrani M, Zarbakhsh S, Farzadmanesh H, Shafia S, Abedinzade M, Ghanaat A, Mohammadi M. Effects of Paraoxon Exposure on Expression of Apoptosis-Related Genes, Neuronal Survival, and Astrocyte Activation in Rat Prefrontal Cortex. Neurotox Res 2019; 37:356-365. [PMID: 31493121 DOI: 10.1007/s12640-019-00106-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 01/12/2023]
Abstract
Paraoxon is the bioactive metabolite of organophosphate (OP) pesticide, parathion. This study aimed to evaluate the expression of apoptosis-related genes and histopathological changes in rat prefrontal cortex following exposure to three different doses of paraoxon. Paraoxon (0.3, 0.7, or 1 mg/kg) or corn oil (vehicle) were intraperitoneally injected to adult male Wistar rats. After 14 or 28 days, mRNA and protein levels of Bax, Bcl-2, and caspase-3 were measured in prefrontal cortex using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blotting, respectively. In addition, neuronal injury and astrocyte activation were assessed using cresyl violet staining and glial fibrillary acidic protein (GFAP) immune-positive cells, respectively. Treatment with 0.7 and 1 mg/kg of paraoxon increased mRNA and protein levels of Bax and caspase-3 at 14 and 28 days post-exposure, while mRNA and protein levels of Bcl-2 decreased only in 1 mg/kg group after 14 days. Furthermore, a significant decrease in the number of neurons and a significant increase in the number of GFAP-positive cells were observed in rats receiving 0.7 and 1 mg/kg of paraoxon at both time points. Collectively, our results showed that apoptosis is a major mechanism for neuronal damage after exposure to paraoxon. Also, paraoxon-induced neuronal loss was correlated with activation of astrocytes. Since paraoxon-induced neuronal damage is closely related to convulsion, clinical management of convulsion could protect neuronal brain damage.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Tehrani
- Department of Immunology, Gastrointestinal Cancer Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamed Farzadmanesh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sakineh Shafia
- Department of Physiology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, KM 17 Khazarabad Road, Khazar Sq, Sari, Iran
| | - Mahmood Abedinzade
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Anahita Ghanaat
- Department of Physiology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, KM 17 Khazarabad Road, Khazar Sq, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, KM 17 Khazarabad Road, Khazar Sq, Sari, Iran.
| |
Collapse
|
7
|
Anxiolytic activity of paraoxon is associated with alterations in rat brain glutamatergic system. Neurotoxicol Teratol 2018; 71:32-40. [PMID: 30576762 DOI: 10.1016/j.ntt.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/18/2023]
Abstract
Exposure to organophosphate (OP) compounds leads to behavioral alterations. To determine whether paraoxon has effects on anxiety, anxiety-like behaviors were assessed in paraoxon-exposed rats. Protein expression of glutamate transporters has also been measured in hippocampus and prefrontal cortex. Three doses of paraoxon (0.3, 0.7, or 1 mg/kg) or corn oil (vehicle) were intraperitoneally injected to adult male rats. At 14 or 28 days after exposure, behavioral tests were done using elevated plus-maze (EPM) or open field tests. Thereafter, animals were sacrificed and both hippocampi and prefrontal cortices were extracted for cholinesterase assay and western blotting. Animals treated with convulsive doses of paraoxon (0.7 and 1 mg/kg) showed an increase in percentage of time spent in open arms and percentage of open arm entries in the EPM. In the open field test, an increase in the time spent in central area was observed in rats treated with the same doses of paraoxon. These effects of paraoxon were independent of any changes in locomotor activity. There was an increase in both astrocytic glutamate transporter proteins (GLAST and GLT-1) in the hippocampus of animals treated with 0.7 and 1 mg/kg of paraoxon. In the prefrontal cortex, protein levels of the GLAST and GLT-1 increased in 0.7 and decreased in 1 mg/kg groups. Only a significant decrease in EAAC1 protein was observed in the prefrontal cortex at 14 days following exposure to 1 mg/kg of paraoxon. Collectively, this study showed that exposure to convulsive doses of paraoxon induced anxiolytic-like behaviors in both behavioral tests. This effect may be attributed to alterations of glutamate transporter proteins in the rat hippocampus and prefrontal cortex.
Collapse
|
8
|
Farizatto KLG, McEwan SA, Naidoo V, Nikas SP, Shukla VG, Almeida MF, Byrd A, Romine H, Karanian DA, Makriyannis A, Bahr BA. Inhibitor of Endocannabinoid Deactivation Protects Against In Vitro and In Vivo Neurotoxic Effects of Paraoxon. J Mol Neurosci 2017; 63:115-122. [PMID: 28803438 DOI: 10.1007/s12031-017-0963-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
The anticholinesterase paraoxon (Pxn) is related to military nerve agents that increase acetylcholine levels, trigger seizures, and cause excitotoxic damage in the brain. In rat hippocampal slice cultures, high-dose Pxn was applied resulting in a presynaptic vulnerability evidenced by a 64% reduction in synapsin IIb (syn IIb) levels, whereas the postsynaptic protein GluR1 was unchanged. Other signs of Pxn-induced cytotoxicity include the oxidative stress-related production of stable 4-hydroxynonenal (4-HNE)-protein adducts. Next, the Pxn toxicity was tested for protective effects by the fatty acid amide hydrolase (FAAH) inhibitor AM5206, a compound linked to enhanced repair signaling through the endocannabinoid pathway. The Pxn-mediated declines in syn IIb and synaptophysin were prevented by AM5206 in the slice cultures. To test if the protective results in the slice model translate to an in vivo model, AM5206 was injected i.p. into rats, followed immediately by subcutaneous Pxn administration. The toxin caused a pathogenic cascade initiated by seizure events, leading to presynaptic marker decline and oxidative changes in the hippocampus and frontal cortex. AM5206 exhibited protective effects including the reduction of seizure severity by 86%, and improving balance and coordination measured 24 h post-insult. As observed in hippocampal slices, the FAAH inhibitor also prevented the Pxn-induced loss of syn IIb in vivo. In addition, the AM5206 compound reduced the 4-HNE modifications of proteins and the β1 integrin activation events both in vitro and in vivo. These results indicate that Pxn exposure produces oxidative and synaptic toxicity that leads to the behavioral deficits manifested by the neurotoxin. In contrast, the presence of FAAH inhibitor AM5206 offsets the pathogenic cascade elicited by the Pxn anticholinesterase.
Collapse
Affiliation(s)
- Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA
| | - Sara A McEwan
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA.,Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Vinogran Naidoo
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA.,Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Spyros P Nikas
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | | | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA
| | - Aaron Byrd
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA
| | - Heather Romine
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA
| | - David A Karanian
- Neurosciences Program, University of Connecticut, Storrs, CT, USA
| | | | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, 28372-1510, USA. .,Neurosciences Program, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
9
|
Differential expression of glutamate transporters in cerebral cortex of paraoxon-treated rats. Neurotoxicol Teratol 2017; 62:20-26. [PMID: 28603072 DOI: 10.1016/j.ntt.2017.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/12/2017] [Accepted: 06/07/2017] [Indexed: 01/05/2023]
Abstract
Glutamatergic system is involved in pathological effects of organophosphorus (OP) compounds. We aimed to determine in vivo effects of paraoxon, the bioactive metabolite of parathion, on the expression of glutamate transporters as well as Bax and Bcl2 in rat cerebral cortex. Male Wistar rats received an intraperitoneal (i.p.) injection of one of three doses of paraoxon (0.3, 0.7, or 1mg/kg) or corn oil as vehicle (1ml/kg). After 4 or 18h, cerebral cortices were dissected out and used for quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot assays to measure mRNA and protein levels, respectively. The cortical glial glutamate transporters (GLAST and GLT-1) were up-regulated in animals treated with 0.7mg/kg of paraoxon, but down-regulated in 1mg/kg group. Neuronal glutamate transporter (EAAC1) was unchanged in 0.7mg/kg treated rats, while reduced in 1mg/kg group. No significant difference was found in the mRNA and protein expression of EAAC1 in animals intoxicated with 0.3mg/kg of paraoxon. Paraoxon (1mg/kg) resulted in an up-regulation of Bax and down-regulation of Bcl2 mRNA levels in the rat cerebral cortex. These results indicate that paraoxon can differentially regulate expression of glutamate transporters at mRNA and protein levels in the cerebral cortex. Changes in the expression of glutamate transporters are closely related to paraoxon-induced seizure activity.
Collapse
|