1
|
Ilyas-Feldmann M, Langer O, Bauer M, Asselin MC, Hendrikse NH, Sisodiya SM, Duncan JS, Löscher W, Koepp M. Tolerability of tariquidar - A third generation P-gp inhibitor as add-on medication to antiseizure medications in drug-resistant epilepsy. Seizure 2024; 119:44-51. [PMID: 38776617 DOI: 10.1016/j.seizure.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE P-glycoprotein (P-gp) has been hypothesized to be involved in drug-resistance of epilepsy by actively extruding antiseizure medications (ASMs) from the brain. The P-gp inhibitor tariquidar (TQD) has been shown to effectively inhibit P-gp at the human blood-brain barrier, improving brain entry of several ASMs. A potential strategy to overcome drug-resistance is the co-administration of P-gp inhibitors such as TQD to ASMs. Here we present data on the tolerability of single-dose TQD as a potential add-on medication to ASMs. METHODS We performed a multi-centre cohort study including drug-resistant epilepsy patients and healthy controls from the United Kingdom and Austria. TQD was administered intravenously at five different doses (2 mg/kg or 3 mg/kg of TQD were given to drug-resistant epilepsy patients and healthy controls, higher doses of TQD at 4 mg/kg, 6 mg/kg and 8 mg/kg as well as a prolonged infusion aiming at a dose of 6 mg/kg were only given to healthy controls). Adverse events were recorded and graded using the Common Terminology Criteria (CTCAE) scale. Additionally, TQD plasma concentration levels were measured and compared between drug-resistant patients and healthy controls. RESULTS In total, 108 participants received TQD once at variable doses and it was overall well tolerated. At doses of 2 or 3 mg/kg TQD, only two of the 19 drug-resistant epilepsy patients and a third of the healthy controls (n = 14/42) reported adverse events probably related to TQD. The majority of those adverse events (96 %) were reported as mild. One drug-resistant epilepsy patient reported adverse events 24-hours after TQD administration possibly related to TQD-induced increased ASMs levels in the brain. CONCLUSIONS TQD is an effective and well tolerated P-gp inhibitor as a single dose and could potentially be used intermittently in conjunction with ASMs to improve efficacy. This promising strategy to overcome drug-resistance in epilepsy should be investigated further in clinical randomised controlled trials.
Collapse
Affiliation(s)
- Maria Ilyas-Feldmann
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom; Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Berlin, Germany.
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Psychosocial Services in Vienna, Vienna, Austria
| | - Marie-Claude Asselin
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom; Division of Informatics, Imaging & Data Science, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - N Harry Hendrikse
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom
| |
Collapse
|
2
|
Shyong YJ, Sepulveda Y, Garcia A, Samskey NM, Radic Z, Sit RK, Sharpless KB, Momper JD, Taylor P. Enhancing Target Tissue Levels and Diminishing Plasma Clearance of Ionizing Zwitterionic Antidotes in Organophosphate Exposures. J Pharmacol Exp Ther 2021; 378:315-321. [PMID: 34145064 PMCID: PMC11046989 DOI: 10.1124/jpet.121.000715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Inhibition of acetylcholinesterase (AChE) by certain organophosphates (OPs) can be life-threatening and requires reactivating antidote accessibility to the peripheral and central nervous systems to reverse symptoms and enhance survival parameters. In considering dosing requirements for oxime antidotes in OP exposures that inactivate AChE, clearance of proton ionizable, zwitterionic antidotes is rapid and proceeds with largely the parent antidotal compound being cleared by renal transporters. Such transporters may also control disposition between target tissues and plasma as well as overall elimination from the body. An ideal small-molecule antidote should access and be retained in primary target tissues-central nervous system (brain), skeletal muscle, and peripheral autonomic sites-for sufficient periods to reactivate AChE and prevent acute toxicity. We show here that we can markedly prolong the antidotal activity of zwitterionic antidotes by inhibiting P-glycoprotein (P-gp) transporters in the brain capillary and renal systems. We employ the P-gp inhibitor tariquidar as a reference compound and show that tissue and plasma levels of RS194B, a hydroxyl-imino acetamido alkylamine reactivator, are elevated and that plasma clearances are reduced. To examine the mechanism, identify the transporter, and establish the actions of a transport inhibitor, we compare the pharmacokinetic parameters in a P-glycoprotein knockout mouse strain and see dramatic enhancements of short-term plasma and tissue levels. Hence, repurposed transport inhibitors that are candidate or Food and Drug Administration-approved drugs, should enhance target tissue concentrations of the zwitterionic antidote through inhibition of both renal elimination and brain capillary extrusion. SIGNIFICANCE STATEMENT: We examine renal and brain capillary transporter inhibition as means for lowering dose and frequency of dosing of a blood-brain barrier permanent reactivating antidote, RS194B, an ionizable zwitterion. Through a small molecule, tariquidar, and gene knockout mice, CNS antidote concentrations are enhanced, and total body clearances are concomitantly diminished. RS194B with repurposed transport inhibitors should enhance reactivation of central and peripheral OP-inhibited acetylcholinesterase. Activities at both disposition sites are a desired features for replacing the antidote, pralidoxime, for acute OP exposure.
Collapse
Affiliation(s)
- Yan-Jye Shyong
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Yadira Sepulveda
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Arnold Garcia
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Nathan M Samskey
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Zoran Radic
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Rakesh K Sit
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - K Barry Sharpless
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Jeremiah D Momper
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, California (Y.-J.S., Y.S., A.G., N.M.S., Z.R., J.D.M., P.T.), and The Scripps Research Institute, Skaggs Institute for Chemical Biology (R.K.S., K.B.S.)
| |
Collapse
|
3
|
Taylor P, Shyong YJ, Samskey N, Ho KY, Radic' Z, Fenical W, Sharpless KB, Kovarik Z, Camacho-Hernandez GA. Ligand design for human acetylcholinesterase and nicotinic acetylcholine receptors, extending beyond the conventional and canonical. J Neurochem 2021; 158:1217-1222. [PMID: 33638151 DOI: 10.1111/jnc.15335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/22/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
We detail here distinctive departures from lead classical cholinesterase re-activators, the pyridinium aldoximes, to achieve rapid CNS penetration and reactivation of AChE in the CNS (brain and spinal cord). Such reactivation is consistent with these non-canonical re-activators enhancing survival parameters in both mice and macaques following exposure to organophosphates. Thus, the ideal cholinesterase re-activator should show minimal toxicity, limited inhibitory activity in the absence of an organophosphate, and rapid CNS penetration, in addition to its nucleophilic potential at the target, the conjugated AChE active center. These are structural properties directed to reactivity profiles at the conjugated AChE active center, reinforced by the pharmacokinetic and tissue disposition properties of the re-activator leads. In the case of nicotinic acetylcholine receptor (nAChR) agonists and antagonists, with the many existing receptor subtypes in mammals, we prioritize subtype selectivity in their design. In contrast to nicotine and its analogues that react with panoply of AChR subtypes, the substituted di-2-picolyl amine pyrimidines possess distinctive ionization characteristics reflecting in selectivity for the orthosteric site at the α7 subtypes of receptor. Here, entry to the CNS should be prioritized for the therapeutic objectives of the nicotinic agent influencing aberrant CNS activity in development or in the sequence of CNS ageing (longevity) in mammals, along with general peripheral activities controlling inflammation.
Collapse
Affiliation(s)
- Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, CA, USA
| | - Yan-Jye Shyong
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, CA, USA
| | - Nathan Samskey
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, CA, USA
| | - Kwok-Yiu Ho
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, CA, USA
| | - Zoran Radic'
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, CA, USA
| | - William Fenical
- Scripps Institution of Oceanography, University of California, CA, USA
| | - K Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, San Diego, CA, USA
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | |
Collapse
|
4
|
Sharma R, Upadhyaya K, Gupta B, Ghosh KK, Tripathi RP, Musilek K, Kuca K. Glycosylated-imidazole aldoximes as reactivators of pesticides inhibited AChE: Synthesis and in-vitro reactivation study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103454. [PMID: 32645360 DOI: 10.1016/j.etap.2020.103454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The present armamentarium of commercially available antidotes provides limited protection against the neurological effects of organophosphate exposure. Hence, there is an urgent need to design and develop molecules that can protect and reactivate inhibited-AChE in the central nervous system. Some natural compounds like glucose and certain amino acids (glutamate, the anion of glutamic acid) can easily cross the blood brain barrier although they are highly polar. Glucose is mainly transported by systems like glucose transporter protein type 1 (GLUT1). For this reason, a series of non-quaternary and quaternary glycosylated imidazolium oximes with different alkane linkers have been designed and synthesized. These compounds were evaluated for their in-vitro reactivation ability against pesticide (paraoxon-ethyl and paraoxon-methyl) inhibited-AChE and compared with standards antidote AChE reactivators pralidoxime and obidoxime. Several physicochemical properties including acid dissociation constant (pKa), logP, logD, HBD and HBA, have also been assessed for reported compounds. Out of the synthesized compounds, three have exhibited comparable potency with a standard antidote (pralidoxime).
Collapse
Affiliation(s)
- Rahul Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, CG 492010, India; Department of Plant Physiology, Agril. Biochemistry, Medicinal & Aromatic Plants, Indira Gandhi Agricultural University, Raipur, CG 492005, India
| | - Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
| | - Bhanushree Gupta
- Centre for Basic Sciences, Pt. Ravishankar Shukla University, Raipur CG 492010, India.
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, CG 492010, India
| | - Rama P Tripathi
- National Institute of Pharmaceutical Education and Research-Raebareli, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, Hradec Kralove, Czech Republic; University Hospital, Biomedical Research Center, Sokolska 581, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Faiz Norrrahim MN, Idayu Abdul Razak MA, Ahmad Shah NA, Kasim H, Wan Yusoff WY, Halim NA, Mohd Nor SA, Jamal SH, Ong KK, Zin Wan Yunus WM, Knight VF, Mohd Kasim NA. Recent developments on oximes to improve the blood brain barrier penetration for the treatment of organophosphorus poisoning: a review. RSC Adv 2020; 10:4465-4489. [PMID: 35495228 PMCID: PMC9049292 DOI: 10.1039/c9ra08599h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 11/25/2022] Open
Abstract
Organophosphorus (OP) compounds are highly toxic synthetic compounds which have been used as pesticides and developed as warfare nerve agents. They represent a threat to both military and civilian populations. OP pesticides affect the nervous system and are thought to have caused at least 5 million deaths since their discovery in the 1930s. At present the treatment of OP nerve agent poisoning commonly involves the use of parenteral oximes. However, the blood brain barrier (BBB) remains a challenge in the delivery of oximes to the central nervous system (CNS). This is because almost all macromolecule drugs (including oximes) fail to pass through the BBB to reach the CNS structures. The presence of a permanent cationic charge in oximes has made these compounds inefficient in crossing the BBB. Thus, oximes are unable to reactivate acetylcholinesterase (AChE) in the CNS. Using current structural and mechanistic understanding of the BBB under both physiological and pathological conditions, it becomes possible to design delivery systems for oximes and other drugs that are able to cross the BBB effectively. This review summarises the recent strategies in the development of oximes which are capable of crossing the BBB to treat OP poisoning. Several new developments using oximes are reviewed along with their advantages and disadvantages. This review could be beneficial for future directions in the development of oxime and other drug delivery systems into the CNS. Organophosphorus (OP) compounds are highly toxic synthetic compounds which have been used as pesticides and developed as warfare nerve agents.![]()
Collapse
|
6
|
Chong YE, Chiang M, Deshpande K, Haroutounian S, Kagan L, Lee JB. Simultaneous quantification of ondansetron and tariquidar in rat and human plasma using a high performance liquid chromatography-ultraviolet method. Biomed Chromatogr 2019; 33:e4653. [PMID: 31322284 PMCID: PMC6800589 DOI: 10.1002/bmc.4653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 01/16/2023]
Abstract
Ondansetron, a widely used antiemetic agent, is a P-glycoprotein (P-gp) substrate and therefore expression of P-gp at the blood-brain barrier limits its distribution to the central nervous system (CNS), which was observed to be reversed by coadministration with P-gp inhibitors. Tariquidar is a potent and selective third-generation P-gp inhibitor, and coadministration with ondansetron has shown improved ondansetron distribution to the CNS. There is currently no reported bioanalytical method for simultaneously quantifying ondansetron with a third-generation P-gp inhibitor. Therefore, we aimed to develop and validate a method for ondansetron and tariquidar in rat and human plasma samples. A full validation was performed for both ondansetron and tariquidar, and sample stability was tested under various storage conditions. To demonstrate its utility, the method was applied to a preclinical pharmacokinetic study following coadministration of ondansetron and tariquidar in rats. The presented method will be valuable in pharmacokinetic studies of ondansetron and tariquidar in which simultaneous determination may be required. In addition, this is the first report of a bioanalytical method validated for quantification of tariquidar in plasma samples.
Collapse
Affiliation(s)
- Yae Eun Chong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA, 08854
| | - Manting Chiang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA, 08854
| | - Kiran Deshpande
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA, 08854
| | - Simon Haroutounian
- Division of Clinical and Translational Research and Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, 63110
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA, 08854
| | - Jong Bong Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, NJ, USA, 08854
| |
Collapse
|