1
|
Upton C, Healey J, Rothnie AJ, Goddard AD. Insights into membrane interactions and their therapeutic potential. Arch Biochem Biophys 2024; 755:109939. [PMID: 38387829 DOI: 10.1016/j.abb.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.
Collapse
Affiliation(s)
- Calum Upton
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Joseph Healey
- Nanosyrinx, The Venture Centre, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Alice J Rothnie
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Alan D Goddard
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
2
|
Xiong X, Qiu Y, Zheng J, Zhou L, Wang Q, Pang J, Zhang W, Chen H, Liu G, Han X. Generation and characterization of a monoclonal antibody against FGFR3 that protects mice from BoNT/A. Protein Expr Purif 2024; 213:106370. [PMID: 37709211 DOI: 10.1016/j.pep.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Botulinum neurotoxin serotype A (BoNT/A) can cause flaccid paralysis of muscles, an illness fatal to human, by entering neurons and blocking neurotransmitter release. The process was mediated by three receptors. A specific monoclonal antibody anti-D23, designated as ML419, targeting the ectodomain (D23) of fibroblast growth factor receptor 3 (FGFR3), one of the three receptors, was screened and capable of disturbing the recognition of BoNT/A and FGFR3. ML419 was screened from 14 stable positive hybridoma cell lines, and was subcloned, sequenced, and classified as IgG2a(κ) subclass. ML419 binds the D23 domain of FGFR3 with high affinity (KD∼0.26 nM), and prevents the BoNT/A from entering Neuro-2a cells effectively. In vivo data showed that, 200 μg of ML419 could completely protect all the mice against with 5 MLD50 BoNT/A, while 100 μg of ML419 could protected 60% of the mice. Collectively, our results indicated that ML419 served as a good candidate for further development of therapeutics for BoNT/A.
Collapse
Affiliation(s)
| | - Yujin Qiu
- Academy of Military Medical Sciences, Beijing, PR China
| | - Jiahao Zheng
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Ling Zhou
- Department of Clinical Laboratory, The Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Qingyang Wang
- Academy of Military Medical Sciences, Beijing, PR China
| | - Jinglun Pang
- College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, PR China
| | - Weicai Zhang
- Academy of Military Medical Sciences, Beijing, PR China
| | - Huipeng Chen
- Academy of Military Medical Sciences, Beijing, PR China.
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing, PR China.
| | - Xiaodong Han
- College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, PR China.
| |
Collapse
|
3
|
Gregory KS, Hall PR, Onuh JP, Mojanaga OO, Liu SM, Acharya KR. Crystal Structure of the Catalytic Domain of a Botulinum Neurotoxin Homologue from Enterococcus faecium: Potential Insights into Substrate Recognition. Int J Mol Sci 2023; 24:12721. [PMID: 37628902 PMCID: PMC10454453 DOI: 10.3390/ijms241612721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Clostridium botulinum neurotoxins (BoNTs) are the most potent toxins known, causing the deadly disease botulism. They function through Zn2+-dependent endopeptidase cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, preventing vesicular fusion and subsequent neurotransmitter release from motor neurons. Several serotypes of BoNTs produced by Clostridium botulinum (BoNT/A-/G and/X) have been well-characterised over the years. However, a BoNT-like gene (homologue of BoNT) was recently identified in the non-clostridial species, Enterococcus faecium, which is the leading cause of hospital-acquired multi-drug resistant infections. Here, we report the crystal structure of the catalytic domain of a BoNT homologue from Enterococcus faecium (LC/En) at 2.0 Å resolution. Detailed structural analysis in comparison with the full-length BoNT/En AlphaFold2-predicted structure, LC/A (from BoNT/A), and LC/F (from BoNT/F) revealed putative subsites and exosites (including loops 1-5) involved in recognition of LC/En substrates. LC/En also appears to possess a conserved autoproteolytic cleavage site whose function is yet to be established.
Collapse
Affiliation(s)
- Kyle S. Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Peter-Rory Hall
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Jude Prince Onuh
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Otsile O. Mojanaga
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Sai Man Liu
- Protein Sciences Department, Ipsen Bioinnovation Limited, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - K. Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| |
Collapse
|
4
|
Tan X, Zhang CC, Lu JS, Li ZY, Li BL, Liu XY, Yu YZ, Xu Q. Biology activity and characterization of the functional L-HN fragment derivative of botulinum neurotoxin serotype E. Anaerobe 2023; 82:102764. [PMID: 37479022 DOI: 10.1016/j.anaerobe.2023.102764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVES The mature botulinum neurotoxin (BoNT) is a long peptide chain consisting of a light chain (L) and a heavy chain (H) linked by a disulfide bond, where the heavy chain is divided into a translocation domain and an acceptor binding domain (Hc). In this study, we further explored the biology activity and characteristics of recombinant L-HN fragment (EL-HN) composed of the L and HN domains of BoNT/E in vivo and in vitro. METHODS Neurotoxicity of L-HN fragments from botulinum neurotoxins was assessed in mice. Cleavage of dichain EL-HN in vitro and in neuro-2a cells was assessed and compared with that of single chain EL-HN. Interaction of HN domain and the receptor synaptic vesicle glycoprotein 2C (SV2C) was explored in vitro and in neuro-2a cells only expressing SV2C. RESULTS We found that the 50% mouse lethal dose of the nicked dichain EL-HN fragment (EL-HN-DC) was 0.5 μg and its neurotoxicity was the highest among the L-HN's of the four serotypes of BoNT (A/B/E/F). The cleavage efficiency of EL-HN-DC toward synaptosome associated protein 25 (SNAP25) in vitro was 3-fold higher than that of the single chain at the cellular level, and showed 200-fold higher animal toxicity. The EL-HN-DC fragment might enter neuro-2a cells via binding to SV2C to efficiently cleave SNAP25. CONCLUSIONS The EL-HN fragment showed good biological activities in vivo and in vitro, and could be used as a drug screening model and to further explore the molecular mechanism of its transmembrane transport.
Collapse
Affiliation(s)
- Xiao Tan
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing, 100044, China; Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Cong-Cong Zhang
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing, 100044, China
| | - Jian-Sheng Lu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhi-Ying Li
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Bo-Lin Li
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xu-Yang Liu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Qing Xu
- Institute of Life Science and Biotechnology, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
5
|
Ni L, Chen H, Xu X, Sun D, Cai H, Wang L, Tang Q, Hao Y, Cao S, Hu X. Neurocircuitry underlying the antidepressant effect of retrograde facial botulinum toxin in mice. Cell Biosci 2023; 13:30. [PMID: 36782335 PMCID: PMC9926702 DOI: 10.1186/s13578-023-00964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUNDS Botulinum toxin type A (BoNT/A) is extensively applied in spasticity and dystonia as it cleaves synaptosome-associated protein 25 (SNAP25) in the presynaptic terminals, thereby inhibiting neurotransmission. An increasing number of randomized clinical trials have suggested that glabellar BoNT/A injection improves depressive symptoms in patients with major depressive disorder (MDD). However, the underlying neuronal circuitry of BoNT/A-regulated depression remains largely uncharacterized. RESULTS Here, we modeled MDD using mice subjected to chronic restraint stress (CRS). By pre-injecting BoNT/A into the unilateral whisker intrinsic musculature (WIM), and performing behavioral testing, we showed that pre-injection of BoNT/A attenuated despair- and anhedonia-like phenotypes in CRS mice. By applying immunostaining of BoNT/A-cleaved SNAP25 (cl.SNAP25197), subcellular spatial localization of SNAP25 with markers of cholinergic neurons (ChAT) and post-synaptic membrane (PSD95), and injection of monosynaptic retrograde tracer CTB-488-mixed BoNT/A to label the primary nucleus of the WIM, we demonstrated that BoNT/A axonal retrograde transported to the soma of whisker-innervating facial motoneurons (wFMNs) and subsequent transcytosis to synaptic terminals of second-order neurons induced central effects. Furthermore, using transsynaptic retrograde and monosynaptic antegrade viral neural circuit tracing with c-Fos brain mapping and co-staining of neural markers, we observed that the CRS-induced expression of c-Fos and CaMKII double-positive neurons in the ventrolateral periaqueductal grey (vlPAG), which sent afferents to wFMNs, was down-regulated 3 weeks after BoNT/A facial pre-administration. Strikingly, the repeated and targeted silencing of the wFMNs-projecting CaMKII-positive neurons in vlPAG with a chemogenetic approach via stereotactic injection of recombinant adeno-associated virus into specific brain regions of CRS mice mimicked the antidepressant-like action of BoNT/A pre-treatment. Conversely, repeated chemogenetic activation of this potential subpopulation counteracted the BoNT/A-improved significant antidepressant behavior. CONCLUSION We reported for the first time that BoNT/A inhibited the wFMNs-projecting vlPAG excitatory neurons through axonal retrograde transport and cell-to-cell transcytosis from the injected location of the WIM to regulate depressive-like phenotypes of CRS mice. For the limited and the reversibility of side effects, BoNT/A has substantial advantages and potential application in MDD.
Collapse
Affiliation(s)
- Linhui Ni
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Hanze Chen
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Xinxin Xu
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China ,grid.13402.340000 0004 1759 700XDepartment of Ultrasonography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Di Sun
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Huaying Cai
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Li Wang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Qiwen Tang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Yonggang Hao
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China ,grid.263761.70000 0001 0198 0694Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215125 China
| | - Shuxia Cao
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053, China.
| | - Xingyue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
6
|
A Comprehensive Structural Analysis of Clostridium botulinum Neurotoxin A Cell-Binding Domain from Different Subtypes. Toxins (Basel) 2023; 15:toxins15020092. [PMID: 36828407 PMCID: PMC9966434 DOI: 10.3390/toxins15020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) cause flaccid neuromuscular paralysis by cleaving one of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. BoNTs display high affinity and specificity for neuromuscular junctions, making them one of the most potent neurotoxins known to date. There are seven serologically distinct BoNTs (serotypes BoNT/A to BoNT/G) which can be further divided into subtypes (e.g., BoNT/A1, BoNT/A2…) based on small changes in their amino acid sequence. Of these, BoNT/A1 and BoNT/B1 have been utilised to treat various diseases associated with spasticity and hypersecretion. There are potentially many more BoNT variants with differing toxicological profiles that may display other therapeutic benefits. This review is focused on the structural analysis of the cell-binding domain from BoNT/A1 to BoNT/A6 subtypes (HC/A1 to HC/A6), including features such as a ganglioside binding site (GBS), a dynamic loop, a synaptic vesicle glycoprotein 2 (SV2) binding site, a possible Lys-Cys/Cys-Cys bridge, and a hinge motion between the HCN and HCC subdomains. Characterising structural features across subtypes provides a better understanding of how the cell-binding domain functions and may aid the development of novel therapeutics.
Collapse
|
7
|
Solabre Valois L, Shi V(H, Bishop P, Zhu B, Nakamura Y, Wilkinson KA, Henley JM. Neurotrophic effects of Botulinum neurotoxin type A in hippocampal neurons involve activation of Rac1 by the non-catalytic heavy chain (HC C/A). IBRO Neurosci Rep 2021; 10:196-207. [PMID: 34041508 PMCID: PMC8143998 DOI: 10.1016/j.ibneur.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are extremely potent naturally occurring poisons that act by silencing neurotransmission. Intriguingly, in addition to preventing presynaptic vesicle fusion, BoNT serotype A (BoNT/A) can also promote axonal regeneration in preclinical models. Here we report that the non-toxic C-terminal region of the receptor-binding domain of heavy chain BoNT/A (HCC/A) activates the small GTPase Rac1 and ERK pathway to potentiate axonal outgrowth, dendritic protrusion formation and synaptic vesicle release in hippocampal neurons. These data are consistent with HCC/A exerting neurotrophic properties, at least in part, independent of any BoNT catalytic activity or toxic effect.
Collapse
Affiliation(s)
- Luis Solabre Valois
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Vanilla (Hua) Shi
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Bishop
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Bangfu Zhu
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
8
|
Jhang JF, Kuo HC. Novel Applications of Non-Invasive Intravesical Botulinum Toxin a Delivery in the Treatment of Functional Bladder Disorders. Toxins (Basel) 2021; 13:toxins13050359. [PMID: 34069951 PMCID: PMC8157602 DOI: 10.3390/toxins13050359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022] Open
Abstract
Although intravesical botulinum toxin type A (BoNT-A) injection for functional bladder disorders is effective, the injection-related problems-such as bladder pain and urinary tract infection-make the procedure invasive and inconvenient. Several vehicles have recently been developed to deliver BoNT-A without injection, thereby making the treatment less or non-invasive. Laboratory evidence revealed that liposome can carry BoNT-A across the uroepithelium and act on sub-urothelial nerve endings. A randomized placebo controlled study revealed that intravesical administration of liposome-encapsulated BoNT-A and TC-3 hydrogel embedded BoNT-A can improve urinary frequency, urgency, and reduce incontinence in patients with overactive bladders. A single-arm prospective study also revealed that intravesical administration of TC-3 hydrogel embedded BoNT-A can relieve bladder pain in patients with interstitial cystitis/bladder pain syndrome (IC/BPS). We recently administered suprapubic energy shock wave (ESW) after BoNT-A intravesical administration in six patients with IC/BPS. Although pain reduction and symptom improvement were not significant, immunochemical staining showed cleaved synaptosome-associated protein 25 in the bladder after the procedure. This suggests that ESW can promote passage of BoNT-A across the uroepithelium. In conclusion, using vehicles to intra-vesically deliver BoNT-A for functional bladder disorders is promising. Further studies are necessary to confirm the efficacy and explore novel applications.
Collapse
|