1
|
Ganhör C, Mayr L, Zolles J, Almeder M, Kazemi M, Mandl M, Wechselberger C, Bandke D, Theiner S, Doppler C, Schweikert A, Müller M, Puh Š, Kotnik M, Langer R, Koellensperger G, Bernhard D. Airborne Aluminum as an Underestimated Source of Human Exposure: Quantification of Aluminum in 24 Human Tissue Types Reveals High Aluminum Concentrations in Lung and Hilar Lymph Node Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11292-11300. [PMID: 38888518 PMCID: PMC11223461 DOI: 10.1021/acs.est.4c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Aluminum (Al) is the most abundant metal in the earth's crust, and humans are exposed to Al through sources like food, cosmetics, and medication. So far, no comprehensive data on the Al distribution between and within human tissues were reported. We measured Al concentrations in 24 different tissue types of 8 autopsied patients using ICP-MS/MS (inductively coupled plasma-tandem mass spectrometry) under cleanroom conditions and found surprisingly high concentrations in both the upper and inferior lobes of the lung and hilar lymph nodes. Al/Si ratios in lung and hilar lymph node samples of 12 additional patients were similar to the ratios reported in urban fine dust. Histological analyses using lumogallion staining showed Al in lung erythrocytes and macrophages, indicating the uptake of airborne Al in the bloodstream. Furthermore, Al was continuously found in PM2.5 and PM10 fine dust particles over 7 years in Upper Austria, Austria. According to our findings, air pollution needs to be reconsidered as a major Al source for humans and the environment.
Collapse
Affiliation(s)
- Clara Ganhör
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Lukas Mayr
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Julia Zolles
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Marion Almeder
- Institute
of Clinical Pathology and Molecular Pathology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Matin Kazemi
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Markus Mandl
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Christian Wechselberger
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Dave Bandke
- Institute
of Clinical Pathology and Molecular Pathology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Sarah Theiner
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christian Doppler
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Andreas Schweikert
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Marina Müller
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Špela Puh
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Michaela Kotnik
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Rupert Langer
- Institute
of Clinical Pathology and Molecular Pathology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Gunda Koellensperger
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - David Bernhard
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
- Clinical
Research Institute for Cardiovascular and Metabolic Diseases, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| |
Collapse
|
2
|
Cirovic A, Cirovic A, Orisakwe OE, Lima RR. Local and Systemic Hypoxia as Inductors of Increased Aluminum and Iron Brain Accumulation Promoting the Onset of Alzheimer's Disease. Biol Trace Elem Res 2023; 201:5134-5142. [PMID: 36757557 DOI: 10.1007/s12011-023-03599-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Human environment is highly contaminated with aluminum, and aluminum is toxic to majority of tissues, particularly to neurons. In previous decades, aluminum exposure was frequently linked with the onset of Alzheimer's disease (AD), and increased levels of Al were detected in the brains of individuals with AD. People who live in a certain area are exposed to aluminum in a similar way (they eat the same vegetable and other foodstuffs, use similar cosmetics, and buy medications from the same manufacturer), nevertheless not all of them develop Alzheimer's disease. Majority of known risk factors for AD promote atherosclerosis and consequently reduce brain blood supply. In this review, we highlighted the significance of local (carotid disease and atherosclerosis of intracranial blood vessels) and systemic hypoxia (chronic obstructive pulmonary disease and anemia) in the development of AD. Nerve tissue is very sophisticated and sensitive to hypoxia and aluminum toxicity. As a side effect of compensatory mechanisms in case of hypoxia, neurons start to uptake aluminum and iron to a greater extent. This makes perfect a background for the gradual onset and development of AD.
Collapse
Affiliation(s)
- Ana Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000, Belgrade, Serbia.
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Choba, Nigeria
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa Street, n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| |
Collapse
|
3
|
Allaria G, De Negri Atanasio G, Filippini T, Robino F, Dondero L, Soggia F, Rispo F, Tardanico F, Ferrando S, Aicardi S, Demori I, Markus J, Cortese K, Zanotti-Russo M, Grasselli E. Innovative In Vitro Strategy for Assessing Aluminum Bioavailability in Oral Care Cosmetics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9362. [PMID: 35954723 PMCID: PMC9368073 DOI: 10.3390/ijerph19159362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Aluminum is an element found in nature and in cosmetic products. It can interfere with the metabolism of other cations, thus inducing gastrointestinal disorder. In cosmetics, aluminum is used in antiperspirants, lipsticks, and toothpastes. The aim of this work is to investigate aluminum bioavailability after accidental oral ingestion derived from the use of a toothpaste containing a greater amount of aluminum hydroxide than advised by the Scientific Committee on Consumer Safety (SCCS). To simulate in vitro toothpaste accidental ingestion, the INFOGEST model was employed, and the amount of aluminum was measured through the ICP-AES analysis. Tissue barrier integrity was analyzed by measuring transepithelial electric resistance, and the tissue architecture was checked through light microscopy. The margin of safety was also calculated. Overall, our results indicate that the acute exposure to aluminum accidentally ingested from toothpastes is safe for the final user, even in amounts higher than SCCS indications.
Collapse
Affiliation(s)
- Giorgia Allaria
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (G.A.); (L.D.); (F.R.); (F.T.); (S.F.); (S.A.); (I.D.)
| | - Giulia De Negri Atanasio
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (G.A.); (L.D.); (F.R.); (F.T.); (S.F.); (S.A.); (I.D.)
| | - Tommaso Filippini
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| | - Federica Robino
- Angel Consulting Via San Senatore 14, 20122 Milano, Italy; (F.R.); (M.Z.-R.)
| | - Lorenzo Dondero
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (G.A.); (L.D.); (F.R.); (F.T.); (S.F.); (S.A.); (I.D.)
- MICAMO S.R.L, 16121 Genoa, Italy
| | - Francesco Soggia
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy;
| | - Francesca Rispo
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (G.A.); (L.D.); (F.R.); (F.T.); (S.F.); (S.A.); (I.D.)
| | - Francesca Tardanico
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (G.A.); (L.D.); (F.R.); (F.T.); (S.F.); (S.A.); (I.D.)
| | - Sara Ferrando
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (G.A.); (L.D.); (F.R.); (F.T.); (S.F.); (S.A.); (I.D.)
| | - Stefano Aicardi
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (G.A.); (L.D.); (F.R.); (F.T.); (S.F.); (S.A.); (I.D.)
| | - Ilaria Demori
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (G.A.); (L.D.); (F.R.); (F.T.); (S.F.); (S.A.); (I.D.)
| | - Jan Markus
- MatTek In Vitro Life Science Laboratories, 82105 Bratislava, Slovakia;
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, University of Genoa, 16132 Genoa, Italy;
| | | | - Elena Grasselli
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (G.A.); (L.D.); (F.R.); (F.T.); (S.F.); (S.A.); (I.D.)
| |
Collapse
|
4
|
Cirovic A, Cirovic A. Aluminum bone toxicity in infants may be promoted by iron deficiency. J Trace Elem Med Biol 2022; 71:126941. [PMID: 35123368 DOI: 10.1016/j.jtemb.2022.126941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
Aluminum has adverse effects on human health. Aluminum is poorly transported from the gastrointestinal tract, but if the load is high, a significant level of aluminum may be absorbed. There are two main sources of aluminum in infants - adapted formulas (when an infant is predominantly fed with it), and vaccines. After aluminum enters the circulation, it binds to transferrin and remains mainly in the skeleton for a longer period of time. Transferrin receptor 1 (TfR1) is highly expressed on osteoblast-like cells whereas the number of TfR1 may additionally rise in case of iron deficiency. Since iron deficiency can induce the additional expression of TfR1, a larger quantities of aluminum may be uptaken by osteoblasts and consequently aluminum may decrease the number of osteoblasts and lead peak bone mass (PBM) closer to the osteoporotic threshold. Iron deficiency may potentiate aluminum-induced toxicity to bones. Aluminum burden in infants has always been considered as harmless whereas a potential increased toxicity of aluminum in high-sensitive infants caused by iron deficiency has not been evaluated.
Collapse
Affiliation(s)
- Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Dr Subotica 4/2, Belgrade 11000, Serbia.
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Dr Subotica 4/2, Belgrade 11000, Serbia.
| |
Collapse
|