1
|
Li G, Sun C, Zhu L, Zeng Y, Li J, Mei Y. High cadmium exposure impairs adult hippocampal neurogenesis via disruption of store-operated calcium entry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117162. [PMID: 39383818 DOI: 10.1016/j.ecoenv.2024.117162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Cadmium (Cd) is a neurotoxicant that gradually accumulates in the human body with age. High Cd burden is correlated with adult hippocampal neurogenesis (AHN) and memory deficits in mammals. However, little knowledge is known about the mechanism by which Cd exposure impairs neurogenesis and cognition. Here, we investigated the roles of store-operated calcium entry (SOCE)-mediated calcium dyshomeostasis in Cd-induced AHN and memory deficits as well as therapeutic potential for the prevention of Cd-induced neurotoxicity. To achieve this goal, 8 weeks-old C57BL/6 J mice were subjected to different concentrations of cadmium chloride (0, 5, 10, 20 ppm) in drinking water for 8 weeks, we then examined the AHN, calcium homeostasis, SOCE channel and memory in Cd-exposed mice by using immunohistochemistry, calcium imaging, Y-maze and fear conditioning test. Our results indicated that chronic Cd exposure markedly increased Cd levels in serum and cerebrospinal fluid by almost 10-fold, and inhibited the proliferation and differentiation of hippocampal adult neural stem cells in a dose-dependent manner. Additionally, Cd exposure impaired the maturation of hippocampal neural stem cells without inducing gliosis. Transcriptome analysis revealed that Cd exposure inhibited the proliferation of neuroblastoma via alteration of calcium signaling pathway, and attenuated SOCE channels played a pivotal role in mediating Cd-induced cytoplasmic calcium overload and depletion of endoplasmic reticulum calcium stores. Activation of SOCE by hyperforin, a natural derivative from medicinal plant, restored intracellular calcium homeostasis and improved AHN and memory in Cd-exposed mice. Together, this study provided novel insights into the mechanism that Cd exposure impaired AHN and memory by prompting neuronal SOCE-mediated calcium dyshomeostasis, and offered a new therapeutic approach for prevention of Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Guoqing Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Caiyun Sun
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Le Zhu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
2
|
Orisakwe OE, Ikpeama EU, Orish CN, Ezejiofor AN, Ozoani HA, Okolo KO, Cirovic A, Cirovic A, Nwaogazie IL. African mesquite elicits neuroprotective activity against quaternary metal mixture -induced olfactory bulb-hippocampal oxido-inflammatory stress via nrf2-hmox-1pathway. Nat Prod Res 2024:1-5. [PMID: 39086197 DOI: 10.1080/14786419.2024.2381018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
African mesquite AM is widely used as an anti-inflammatory agent in sub-Sahara Africa especially Nigeria. Given its strong anti-inflammatory potency, this study has evaluated the neuroprotective properties of AM in the hippocampus HIP and olfactory bulb OB of rats exposed to Cd, As, Hg, and Pb. Twenty-five albino Sprague Dawley rats were randomly divided into five groups in this experiment. Group 1, the control received only water. Group 2 received heavy metal mixture HMM (PbCl2 (20 mg/kg), CdCl2 (1.61 mg/kg), HgCl2 (0.40 mg/kg), and NaAsO3 (10 mg/kg), for 60 days. Groups 3, 4, and 5 were treated with HMM along with AM at doses of 500, 1000, and 1500 mg/kg, respectively. AM decreased the Cd, As, Hg, and Pb levels in OB and HIP, restored the activities of antioxidants, Hmox-1, reduced the activities of AChE, NRF2 and NFkB and improved histopathology.
Collapse
Affiliation(s)
- Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Turkey
| | - Evelyn Utomoibor Ikpeama
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Harrison Anezi Ozoani
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Science & Technology, Agbani, Enugu State, Nigeria
| | - Kenneth O Okolo
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Science & Technology, Agbani, Enugu State, Nigeria
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Ify L Nwaogazie
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| |
Collapse
|
3
|
Middleton LYM, Walker E, Cockell S, Dou J, Nguyen VK, Schrank M, Patel CJ, Ware EB, Colacino JA, Park SK, Bakulski KM. Exposome-wide association study of cognition among older adults in the National Health and Nutrition Examination Survey. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.19.24310725. [PMID: 39072041 PMCID: PMC11275687 DOI: 10.1101/2024.07.19.24310725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cognitive impairment among older adults is a growing public health challenge and environmental chemicals may be modifiable risk factors. A wide array of chemicals has not yet been tested for association with cognition in an environment-wide association framework. In the US National Health and Nutrition Examination Survey (NHANES) 1999-2000 and 2011-2014 cross-sectional cycles, cognition was assessed using the Digit Symbol Substitution Test (DSST, scores 0-117) among participants aged 60 years and older. Concentrations of environmental chemicals measured in blood or urine were log2 transformed and standardized. Chemicals with at least 50% of measures above the lower limit of detection were included (nchemicals=147, nclasses=14). We tested for associations between chemical concentrations and cognition using parallel survey-weighted multivariable linear regression models adjusted for age, sex, race/ethnicity, education, smoking status, fish consumption, cycle year, urinary creatinine, and cotinine. Participants with at least one chemical measurement (n=4,982) were mean age 69.8 years, 55.0% female, 78.2% non-Hispanic White, and 77.0% at least high school educated. The mean DSST score was 50.4 (standard deviation (SD)=17.4). In adjusted analyses, 5 of 147 exposures were associated with DSST at p-value<0.01. Notably, a SD increase in log2-scaled cotinine concentration was associated with 2.71 points lower DSST score (95% CI -3.69, -1.73). A SD increase in log2-scaled urinary tungsten concentration was associated with 1.34 points lower DSST score (95% CI -2.11, -0.56). Exposure to environmental chemicals, particularly heavy metals and tobacco smoke, may be modifiable factors for cognition among older adults.
Collapse
Affiliation(s)
- Lauren Y M Middleton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Medical School, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Erika Walker
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scarlet Cockell
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vy K Nguyen
- Medical School, University of Michigan, Ann Arbor, MI, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Mitchell Schrank
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Chirag J Patel
- Medical School, University of Michigan, Ann Arbor, MI, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Erin B Ware
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Zhang Z, Liang W, Zheng X, Zhong Q, Hu H, Huo X. Kindergarten dust heavy metal(loid) exposure associates with growth retardation in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118341-118351. [PMID: 37910347 DOI: 10.1007/s11356-023-30278-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Heavy metal contamination from electronic waste recycling sites is present in dust found in indoor kindergartens located in e-waste recycling areas, and its potential impact on child health is a significant concern. The association between heavy metal(loid)s and the child developmental indicators is still unclear. In 2019 and 2020, we enrolled 325 and 319 children in an e-waste recycling town, respectively. Corresponding 61 and 121 dust samples were collected from roads, houses, and kindergartens in the two years. The median concentrations of metals, including Cr, Ni, Cu, Zn, and Pb exceeded the allowable limits. The highest amount of cumulative enrichment (cEF) was observed in indoor kindergarten dust (cEF = 112.3400), followed by house dust (cEF = 76.6950) and road dust (cEF = 39.7700). Children residing in the e-waste town had below-average height and weight compared to their Chinese peers. Based on linear regression analysis, the daily intake of Cd, V, Mn, and Pb in indoor kindergarten dust was found to be negatively associated with head circumference (HeC) (P < 0.05). Similarly, the daily intake of As, Cd, and Ba in indoor kindergarten dust was found to be negatively associated with chest circumference (ChC) (P < 0.05). In addition, the daily intake of As, Cd, and Ba in indoor kindergarten dust was negatively correlated with body mass index (BMI), as per the results of the study (P < 0.05). Cross-product term analysis revealed a negative correlation between daily intake of heavy metal(loid)s and HeC, ChC, and BMI, with age and sex serving as influencing factors. In conclusion, exposure to heavy metal(loid)s in indoor kindergarten dust increases the risk of growth retardation and developmental delay in children.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Wanting Liang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hongfei Hu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
5
|
Song B, Zhang Y, Xiong G, Luo H, Zhang B, Li Y, Wang Z, Zhou Z, Chang X. Single-cell transcriptomic analysis reveals the adverse effects of cadmium on the trajectory of neuronal maturation. Cell Biol Toxicol 2023; 39:1697-1713. [PMID: 36114956 DOI: 10.1007/s10565-022-09775-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Cadmium (Cd) is an extensively existing environmental pollutant that has neurotoxic effects. However, the molecular mechanism of Cd on neuronal maturation is unveiled. Single-cell RNA sequencing (scRNA-seq) has been widely used to uncover cellular heterogeneity and is a powerful tool to reconstruct the developmental trajectory of neurons. In this study, neural stem cells (NSCs) from subventricular zone (SVZ) of newborn mice were treated with CdCl2 for 24 h and differentiated for 7 days to obtain neuronal lineage cells. Then scRNA-seq analysis identified five cell stages with different maturity in neuronal lineage cells. Our findings revealed that Cd altered the trajectory of maturation of neuronal lineage cells by decreasing the number of cells in different stages and hindering their maturation. Cd induced differential transcriptome expression in different cell subpopulations in a stage-specific manner. Specifically, Cd induced oxidative damage and changed the proportion of cell cycle phases in the early stage of neuronal development. Furthermore, the autocrine and paracrine signals of Wnt5a were downregulated in the low mature neurons in response to Cd. Importantly, activation of Wnt5a effectively rescued the number of neurons and promoted their maturation. Taken together, the findings of this study provide new and comprehensive insights into the adverse effect of Cd on neuronal maturation.
Collapse
Affiliation(s)
- Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yuwei Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zhibin Wang
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Deng P, Zhang H, Wang L, Jie S, Zhao Q, Chen F, Yue Y, Wang H, Tian L, Xie J, Chen M, Luo Y, Yu Z, Pi H, Zhou Z. Long-term cadmium exposure impairs cognitive function by activating lnc-Gm10532/m6A/FIS1 axis-mediated mitochondrial fission and dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159950. [PMID: 36336035 DOI: 10.1016/j.scitotenv.2022.159950] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd), a ubiquitous environmental contaminant, is deemed a possible aetiological cause of cognitive disorders in humans. Nevertheless, the exact mechanism by which chronic exposure to Cd causes neurotoxicity is not fully understood. In this study, mouse neuroblastoma cells (Neuro-2a cells) and primary hippocampal neurons were exposed to low-dose (1, 2, and 4 μM for Neuro-2a cells or 0.5, 1, and 1.5 μM for hippocampal neurons) cadmium chloride (CdCl2) for 72 h (h), and male mice (C57BL/6J, 8 weeks) were orally administered CdCl2 (0.6 mg/L, approximately equal to 2.58 μg/kg·bw/d) for 6 months to investigate the effects and mechanism of chronic Cd-induced neurotoxicity. Here, chronic exposure to Cd impaired mitochondrial function by promoting excess reactive oxygen species (ROS) production, altering mitochondrial membrane potential (Δψm) and reducing adenosine triphosphate (ATP) content, contributing to neuronal cell death. Specifically, microarray analysis revealed that the long noncoding RNA Gm10532 (lnc-Gm10532) was most highly expressed in Neuro-2a cells exposed to 4 μM CdCl2 for 72 h compared with controls, and inhibition of lnc-Gm10532 significantly antagonized CdCl2-induced mitochondrial dysfunction and neurotoxicity. Mechanistically, lnc-Gm10532 increased Fission 1 (FIS1) expression and mitochondrial fission by recruiting the m6A writer methyltransferase-like 14 (METTL14) and enhancing m6A modification of Fis1 mRNA. Moreover, lnc-Gm10532 was also required for chronic Cd-induced mitochondrial dysfunction and memory deficits in a rodent model. Therefore, data of this study reveal a new epigenetic mechanism of chronic Cd neurotoxicity.
Collapse
Affiliation(s)
- Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Huadong Zhang
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Sheng Jie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Qi Zhao
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Fengqiong Chen
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China.
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Li Y, Yin Q, Wang B, Shen T, Luo W, Liu T. Preclinical reserpine models recapitulating motor and non-motor features of Parkinson’s disease: Roles of epigenetic upregulation of alpha-synuclein and autophagy impairment. Front Pharmacol 2022; 13:944376. [PMID: 36313295 PMCID: PMC9597253 DOI: 10.3389/fphar.2022.944376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Reserpine is an effective drug for the clinical treatment of hypertension. It also induces Parkinson’s disease (PD)-like symptoms in humans and animals possible through the inhibition of monoamine vesicular transporters, thus decreasing the levels of monoamine neurotransmitters in the brain. However, the precise mechanisms remain unclear. Herein, we aimed to develop a preclinical reserpine model recapitulating the non-motor and motor symptoms of PD and investigate the underlying potential cellular mechanisms. Incubation of reserpine induced apoptosis, led to the accumulation of intracellular reactive oxygen species (ROS), lowered DNA methylation of alpha-synuclein gene, resulted in alpha-synuclein protein deposition, and elevated the ratio of LC3-II/LC3-Ⅰ and p62 in cultured SH-SY5Y cells. Feeding reserpine dose-dependently shortened the lifespan and caused impairment of motor functions in male and female Drosophila. Moreover, long-term oral administration of reserpine led to multiple motor and non-motor symptoms, including constipation, pain hypersensitivity, olfactory impairment, and depression-like behaviors in mice. The mechanistic studies showed that chronic reserpine exposure caused hypomethylation of the alpha-synuclein gene and up-regulated its expression and elevated the ratio of LC3-II/LC3-Ⅰ and expression of p62 in the substantia nigra of mice. Thus, we established preclinical animal models using reserpine to recapitulate the motor and non-motor symptoms of PD. Chronic reserpine exposure epigenetically elevated the levels of alpha-synuclein expression possible by lowering the DNA methylation status and inducing autophagic impairment in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Weifeng Luo,
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- *Correspondence: Tong Liu, ; Weifeng Luo,
| |
Collapse
|
8
|
Abstract
With extensive use in industrial and agriculture applications, overexposure to heavy metals has become a global public health concern. The nervous system is vulnerable to many heavy metals, including cadmium, lead, and mercury. However, the knowledge about the underlying mechanisms of these metals' neurotoxicity is still very limited. Adult neurogenesis is a process of generating functional neurons from adult neural progenitor/stem cells (aNPCs), which plays an important role in cognitive function and olfaction. The studies of adult neurogenesis provide new insights into mechanisms of heavy metal neurotoxicity. This review summarizes the current research about the effects of heavy metals on adult neurogenesis and discusses their importance in understanding the mechanisms of heavy metals neurotoxicity, as well as challenges and future directions.
Collapse
Affiliation(s)
- Hao Wang
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Megumi T. Matsushita
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|