1
|
Campos GM, Santos PA, Uczay M, Pflüger P, Mendes TL, Fontenla JA, Pereira P. Gamma-Decanolactone Increases Stress Resistance and Improves Toxicity Parameters on the Caenorhabditis elegans Alternative Model. J Appl Toxicol 2024. [PMID: 39367589 DOI: 10.1002/jat.4705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 10/06/2024]
Abstract
Gamma-decanolactone (GD) is a monoterpene compound with anticonvulsant, antiparkinsonian, and neuroprotective effects in preclinical trials. This study aimed to evaluate the toxicity and antioxidant profile of GD in silico and in the Caenorhabditis elegans (C. elegans) experimental model. The C. elegans was used to determine the median lethal concentration (LC50) of GD, as well as its effect on survival, development, reproduction, pharyngeal pumping, and stress resistance assays. The in silico study did not indicate hepatotoxic, cardiotoxic, or mutagenic potential to GD. It reduced the worms' survival, both at the L1 and L4 stages, in a concentration-dependent manner with an LC50 value of 212.16 ± 5.56 μmol/mL. GD did not alter the development, reproduction, and pharyngeal pumping under normal experimental conditions in the three concentrations tested (25, 50, and 100 μmol/mL). In the thermal stress assay, GD did not change the survival pattern of the worms. Hydrogen peroxide (H2O2) reduced the survival of C. elegans and decreased the number of pharyngeal pumping, with these effects being reversed by GD. Also, GD presents an antioxidant activity by modulation the expression of the stress response genes such as sod-3, ctl-1,2,3, and gst-4. In conclusion, GD showed low toxicity in the C. elegans model and antioxidant profile both in the in silico study and in vivo assays.
Collapse
Affiliation(s)
- Glaucia Maria Campos
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Péterson Alves Santos
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- GI-1684 Laboratory of Central Nervous System Pharmacology (Faculty of Pharmacy), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mariana Uczay
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- GI-1684 Laboratory of Central Nervous System Pharmacology (Faculty of Pharmacy), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pricila Pflüger
- GI-1684 Laboratory of Central Nervous System Pharmacology (Faculty of Pharmacy), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Thaís Lemos Mendes
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jose Angel Fontenla
- GI-1684 Laboratory of Central Nervous System Pharmacology (Faculty of Pharmacy), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- GI-1684 Laboratory of Central Nervous System Pharmacology (Faculty of Pharmacy), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Santos PA, Uczay M, Pflüger P, Lobo LAC, Rott MB, Fontenla JA, Rodrigues Siqueira I, Pereira P. Toxicological assessment of the Achyrocline satureioides aqueous extract in the Caenorhabditis elegans alternative model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:730-751. [PMID: 38904345 DOI: 10.1080/15287394.2024.2368618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Achyrocline satureioides, popularly called "marcela" in Brazil, is used in traditional medicine in South America. A. satureioides, inflorescences are used for many conditions, including to minimize the Sars-Cov-2 symptoms. Therefore, the aim of this study was to determine the toxicity profile of A. satureioides aqueous extract (ASAE), using the Caenorhabditis elegans (C. elegans) alternative model. Survival, reproduction, development, and transgenerational assays were performed. The effects of ASAE were investigated under conditions of thermal stress and presence of oxidant hydrogen peroxide (H2O2). In addition, C. elegans strains containing high antioxidant enzyme levels and elevated lineages of daf-16, skn-1 and daf-2 regulatory pathways were examined. The ASAE LC50 value was found to be 77.3 ± 4 mg/ml. The concentration of ASAE 10 mg/ml (frequently used in humans) did not exhibit a significant reduction in worm survival at either the L1 or L4 stage, after 24 or 72 hr treatment. ASAE did not markedly alter the body area. In N2 strain, ASAE (10 or 25 mg/ml) reversed the damage initiated by H2O2. In addition, ASAE protected the damage produced by H2O2 in strains containing significant levels of sod-3, gst-4 and ctl - 1,2,3, suggesting modulation in these antioxidant systems by this plant extract. ASAE exposure activated daf-16 and skn-1 stress response transcriptional pathways independently of daf-2, even under extreme stress. Data suggest that ASAE, at the concentrations tested in C. elegans, exhibits a reliable toxicity profile, which may contribute to consideration for safe use in humans.
Collapse
Affiliation(s)
- Péterson Alves Santos
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Uczay
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pricila Pflüger
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Larissa Aline Carneiro Lobo
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jose Angel Fontenla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ionara Rodrigues Siqueira
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pereira
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Xiang K, Wang B, Wang L, Zhang Y, Li H, Luo Y. Oxidative Stress, Oxidative Damage, and Cell Apoptosis: Toxicity Induced by Arecoline in Caenorhabditis elegans and Screening of Mitigating Agents. Toxins (Basel) 2024; 16:352. [PMID: 39195762 PMCID: PMC11359293 DOI: 10.3390/toxins16080352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
As the areca nut market is expanding, there is a growing concern regarding areca nut toxicity. Areca nut alkaloids are the major risky components in betel nuts, and their toxic effects are not fully understood. Here, we investigated the parental and transgenerational toxicity of varied doses of areca nut alkaloids in Caenorhabditis elegans. The results showed that the minimal effective concentration of arecoline is 0.2-0.4 mM. First, arecoline exhibited transgenerational toxicity on the worms' longevity, oviposition, and reproduction. Second, the redox homeostasis of C. elegans was markedly altered under exposure to 0.2-0.4 mM arecoline. The mitochondrial membrane potential was thereafter impaired, which was also associated with the induction of apoptosis. Moreover, antioxidant treatments such as lycopene could significantly ameliorate the toxic effects caused by arecoline. In conclusion, arecoline enhances the ROS levels, inducing neurotoxicity, developmental toxicity, and reproductive toxicity in C. elegans through dysregulated oxidative stress, cell apoptosis, and DNA damage-related gene expression. Therefore, the drug-induced production of reactive oxygen species (ROS) may be crucial for its toxic effects, which could be mitigated by antioxidants.
Collapse
Affiliation(s)
- Kaiping Xiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Bing Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Lanying Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Yunfei Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Hanzeng Li
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanping Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| |
Collapse
|
4
|
Hughes S, Hessel EVS. Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity. Crit Rev Toxicol 2024; 54:330-343. [PMID: 38832580 DOI: 10.1080/10408444.2024.2342448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Despite the growing epidemiological evidence of an association between toxin exposure and developmental neurotoxicity (DNT), systematic testing of DNT is not mandatory in international regulations for admission of pharmaceuticals or industrial chemicals. However, to date around 200 compounds, ranging from pesticides, pharmaceuticals and industrial chemicals, have been tested for DNT in the current OECD test guidelines (TG-443 or TG-426). There are calls for the development of new approach methodologies (NAMs) for DNT, which has resulted in a DNT testing battery using in vitro human cell-based assays. These assays provide a means to elucidate the molecular mechanisms of toxicity in humans which is lacking in animal-based toxicity tests. However, cell-based assays do not represent all steps of the complex process leading to DNT. Validated models with a multi-organ network of pathways that interact at the molecular, cellular and tissue level at very specific timepoints in a life cycle are currently missing. Consequently, whole model organisms are being developed to screen for, and causally link, new molecular targets of DNT compounds and how they affect whole brain development and neurobehavioral endpoints. Given the practical and ethical restraints associated with vertebrate testing, lower animal models that qualify as 3 R (reduce, refine and replace) models, including the nematode (Caenorhabditis elegans) and the zebrafish (Danio rerio) will prove particularly valuable for unravelling toxicity pathways leading to DNT. Although not as complex as the human brain, these 3 R-models develop a complete functioning brain with numerous neurodevelopmental processes overlapping with human brain development. Importantly, the main signalling pathways relating to (neuro)development, metabolism and growth are highly conserved in these models. We propose the use of whole model organisms specifically zebrafish and C. elegans for DNT relevant endpoints.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
5
|
Essmann CL, Elmi M, Rekatsinas C, Chrysochoidis N, Shaw M, Pawar V, Srinivasan MA, Vavourakis V. The influence of internal pressure and neuromuscular agents on C. elegans biomechanics: an empirical and multi-compartmental in silico modelling study. Front Bioeng Biotechnol 2024; 12:1335788. [PMID: 38558792 PMCID: PMC10978802 DOI: 10.3389/fbioe.2024.1335788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
The function of a specific tissue and its biomechanics are interdependent, with pathologies or ageing often being intertwined with structural decline. The biomechanics of Caenorhabditis elegans, a model organism widely used in pharmacological and ageing research, has been established as biomarker for healthy ageing. However, the properties of the constituent tissues, and their contribution to the overall mechanical characteristics of the organism, remain relatively unknown. In this study we investigated the biomechanics of healthy C. elegans cuticle, muscle tissue, and pseudocoelom using a combination of indentation experiments and in silico modelling. We performed stiffness measurements using an atomic force microscope. To approximate the nematode's cylindrical body we used a novel three-compartment nonlinear finite element model, enabling us to analyse of how changes in the elasticity of individual compartments affect the bulk stiffness. We then fine-tuned the parameters of the model to match the simulation force-indentation output to the experimental data. To test the finite element model, we modified distinct compartments experimentally. Our in silico results, in agreement with previous studies, suggest that hyperosmotic shock reduces stiffness by decreasing the internal pressure. Unexpectedly, treatment with the neuromuscular agent aldicarb, traditionally associated with muscle contraction, reduced stiffness by decreasing the internal pressure. Furthermore, our finite element model can offer insights into how drugs, mutations, or processes such as ageing target individual tissues.
Collapse
Affiliation(s)
- Clara L. Essmann
- Department of Bioinformatics and Molecular Genetics, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
- Department of Computer Science, University College London, London, United Kingdom
| | - Muna Elmi
- Department of Computer Science, University College London, London, United Kingdom
| | | | - Nikolaos Chrysochoidis
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - Michael Shaw
- Department of Computer Science, University College London, London, United Kingdom
- National Physical Laboratory, Teddington, United Kingdom
| | - Vijay Pawar
- Department of Computer Science, University College London, London, United Kingdom
| | | | - Vasileios Vavourakis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
6
|
Izquierdo PG, Calahorro F, Thisainathan T, Atkins JH, Haszczyn J, Lewis CJ, Tattersall JEH, Green AC, Holden-Dye L, O'Connor V. Cholinergic signaling at the body wall neuromuscular junction distally inhibits feeding behavior in Caenorhabditis elegans. J Biol Chem 2021; 298:101466. [PMID: 34864060 PMCID: PMC8801469 DOI: 10.1016/j.jbc.2021.101466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 11/13/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022] Open
Abstract
Complex biological functions within organisms are frequently orchestrated by systemic communication between tissues. In the model organism Caenorhabditis elegans, the pharyngeal and body wall neuromuscular junctions are two discrete structures that control feeding and locomotion, respectively. Separate, the well-defined neuromuscular circuits control these distinct tissues. Nonetheless, the emergent behaviors, feeding and locomotion, are coordinated to guarantee the efficiency of food intake. Here, we show that pharmacological hyperactivation of cholinergic transmission at the body wall muscle reduces the rate of pumping behavior. This was evidenced by a systematic screening of the effect of the cholinesterase inhibitor aldicarb on the rate of pharyngeal pumping on food in mutant worms. The screening revealed that the key determinants of the inhibitory effect of aldicarb on pharyngeal pumping are located at the body wall neuromuscular junction. In fact, the selective stimulation of the body wall muscle receptors with the agonist levamisole inhibited pumping in a lev-1-dependent fashion. Interestingly, this response was independent of unc-38, an alpha subunit of the nicotinic receptor classically expressed with lev-1 at the body wall muscle. This implies an uncharacterized lev-1-containing receptor underpins this effect. Overall, our results reveal that body wall cholinergic transmission not only controls locomotion but simultaneously inhibits feeding behavior.
Collapse
Affiliation(s)
- Patricia G Izquierdo
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.
| | - Fernando Calahorro
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Thibana Thisainathan
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - James H Atkins
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Johanna Haszczyn
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Christian J Lewis
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - John E H Tattersall
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - A Christopher Green
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Vincent O'Connor
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
7
|
Calahorro F, Holden-Dye L, O'Connor V. Impact of drug solvents on C. elegans pharyngeal pumping. Toxicol Rep 2021; 8:1240-1247. [PMID: 34195015 PMCID: PMC8233170 DOI: 10.1016/j.toxrep.2021.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 02/05/2023] Open
Abstract
Caenorhabditis elegans provides a multi-cellular model organism for toxicology and drug discovery. These studies usually require solvents such as dimethyl sulfoxide (DMSO), ethanol or acetone as a vehicle. This raises the need to carefully consider whether the chemical vehicles used in these screens are anodyne towards C. elegans. Here, we use pharyngeal pumping as a bioassay to assess this. Pharyngeal pumping is a visually scoreable behaviour that is controlled by environmental cues activating sensory and integrative neural signalling to coordinate pharyngeal activity. As such it serves as a rich bioassay to screen for chemical modulation. We found that while pumping was insensitive to high concentrations of the widely used drug solvents ethanol and acetone, it was perturbed by concentrations of DMSO above 0.5 % v/v encompassing concentrations used as drug vehicle. This was manifested as an inhibition of pharyngeal pump rate followed by a slow recovery in the continued presence of the solvent. The inhibition was not observed in a neuroligin mutant, nlg-1, consistent with DMSO acting at the level of sensory processing that modulates pumping. We found that bus-17 mutants, which have enhanced cuticle penetration to drugs are more sensitive to DMSO. The effect of DMSO is accompanied by a progressive morphological disruption in which internal membrane-like structures of varying size accumulate. These internal structures are seen in all three genotypes investigated in this study and likely arise independent of the effects on pharyngeal pumping. Overall, these results highlight sensory signalling and strain dependent vehicle sensitivity. Although we define concentrations at which this can be mitigated, it highlights the need to consider time-dependent vehicle effects when evaluating control responses in C. elegans chemical biology.
Collapse
|