1
|
Markiv B, Ruiz-Azcona L, Expósito A, Santibáñez M, Fernández-Olmo I. Short- and long-term exposure to trace metal(loid)s from the production of ferromanganese alloys by personal sampling and biomarkers. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4595-4618. [PMID: 35190915 PMCID: PMC8860625 DOI: 10.1007/s10653-022-01218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 05/06/2023]
Abstract
The environmental exposure to trace metal(loid)s (As, Cd, Cu, Fe, Mn, Pb, and Zn) was assessed near a ferromanganese alloy plant using filters from personal particulate matter (PM) samplers (bioaccessible and non-bioaccessible fine and coarse fractions) and whole blood as short-term exposure markers, and scalp hair and fingernails as long-term biomarkers, collected from volunteers (n = 130) living in Santander Bay (northern Spain). Bioaccessible and non-bioaccessible metal(loid) concentrations in coarse and fine PM from personal samplers were determined by ICP-MS after extraction/digestion. Metal(loid) concentration in biomarkers was measured after alkaline dilution (whole blood) and acid digestion (fingernails and scalp hair) by ICP-MS as well. Results were discussed in terms of exposure, considering the distance to the main Mn source, and sex. In terms of exposure, significant differences were found for Mn in all the studied fractions of PM, As in whole blood, Mn and Cu in scalp hair and Mn and Pb in fingernails, with all concentrations being higher for those living closer to the Mn source, with the exception of Cu in scalp hair. Furthermore, the analysis of the correlation between Mn levels in the studied biomarkers and the wind-weighted distance to the main source of Mn allows us to conclude that scalp hair and mainly fingernails are appropriate biomarkers of long-term airborne Mn exposure. This was also confirmed by the significant positive correlations between scalp hair Mn and bioaccessible Mn in coarse and fine fractions, and between fingernails Mn and all PM fractions. This implies that people living closer to a ferromanganese alloy plant are exposed to higher levels of airborne metal(loid)s, mainly Mn, leading to higher levels of this metal in scalp hair and fingernails, which according to the literature, might affect some neurological outcomes. According to sex, significant differences were observed for Fe, Cu and Pb in whole blood, with higher concentrations of Fe and Pb in males, and higher levels of Cu in females; and for Mn, Cu, Zn, Cd and Pb in scalp hair, with higher concentrations in males for all metal(loid)s except Cu.
Collapse
Affiliation(s)
- B Markiv
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain.
| | - L Ruiz-Azcona
- Departamento de Enfermería, Universidad de Cantabria, Santander, Spain
| | - A Expósito
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| | - M Santibáñez
- Departamento de Enfermería, Universidad de Cantabria, Santander, Spain
| | - I Fernández-Olmo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
2
|
Shilnikova N, Karyakina N, Farhat N, Ramoju S, Cline B, Momoli F, Mattison D, Jensen N, Terrell R, Krewski D. Biomarkers of environmental manganese exposure. Crit Rev Toxicol 2022; 52:325-343. [PMID: 35894753 DOI: 10.1080/10408444.2022.2095979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We conducted a critical review on biomarkers of environmental manganese (Mn) exposure to answer the following questions: 1) are there reliable biomarkers of internal Mn exposure (Mn in biological matrices) associated with external metrics of Mn exposure (Mn in environmental media)? and 2) are there accurate reference values (RVs) for Mn in biological matrices? Three bibliographic databases were searched for relevant references and identified references were screened by two independent reviewers. Of the 6342 unique references identified, 86 articles were retained for data abstraction. Our analysis of currently available evidence suggests that Mn levels in blood and urine are not useful biomarkers of Mn exposure in non-occupational settings. The strength of the association between Mn in environmental media and saliva was variable. Findings regarding the utility of hair Mn as a biomarker of environmental Mn exposure are inconsistent. Measurements of Mn in teeth are technically challenging and findings on Mn in tooth components are scarce. In non-occupationally exposed individuals, bone Mn measurements using in vivo neutron activation analysis (IVNAA) are associated with large uncertainties. Findings suggest that Mn in nails may reflect Mn in environmental media and discriminate between groups of individuals exposed to different environmental Mn levels, although more research is needed. Currently, there is no strong evidence for any biological matrix as a valid biomarker of Mn exposure in non-occupational settings. Because of methodological limitations in studies aimed at derivation of RVs for Mn in biological materials, accurate RVs are scarce.
Collapse
Affiliation(s)
- Natalia Shilnikova
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Nataliya Karyakina
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Nawal Farhat
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada
| | | | | | - Franco Momoli
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Donald Mattison
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Natalie Jensen
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Rowan Terrell
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Ruiz-Azcona L, Markiv B, Expósito A, Pozueta A, García-Martínez M, Fernández-Olmo I, Santibáñez M. Poorer cognitive function and environmental airborne Mn exposure determined by biomonitoring and personal environmental monitors in a healthy adult population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152940. [PMID: 35007600 DOI: 10.1016/j.scitotenv.2022.152940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM In the Santander Bay (Cantabria, northern Spain), a ferromanganese alloy plant is located. Our objective was to characterize the Mn personal exposure of adult healthy volunteers living in this highly Mn exposed region, and to determine its association with a poorer cognitive function. METHODS Cross-sectional study analyzing 130 consecutive participants. Cognitive function was assessed by Stroop Color Word, Verbal Fluency tests, Trail Making Test (TMT), Digit Span (WAIS III) and Rey Osterrieth Complex Figure (ROCF) tests and crude scores were standardized according to NEURONORMA norms. Exposure to Mn was assessed in terms of source distance, by Personal Environmental Monitors (PEMs) allowing the separation of fine (PM2.5) and coarse (PM10-2.5) particles (obtaining the bioaccessible fraction by in-vitro bioaccessibility tests), and by biomarkers (blood, hair and fingernails). Age, sex, study level and number of years of residence were predefined as confounding variables and adjusted Mean Differences (MDs) were obtained. RESULTS Statistically significant lower scores (negative MDs) in all test were observed when living near the industrial emission source, after adjusting for the predefined variables. Regarding PEMs results, statistically significant lower scores in all Stroop parts were obtained in participants with higher levels of Total Mn in All fractions (PM10). For Verbal Fluency tests, negative MDs were obtained for both bioaccessible fractions. Digit Span Backward scores were lower for those with higher levels in the bioaccessible coarse fraction, and negative MDs were also observed for the ROCF Delayed part and the non-bioaccessible fine fraction. As regards to Mn in fingernails, adjusted MDs of -1.60; 95%CI (-2.57 to -0.64) and -1.45; 95%CI (-2.29 to -0.61) for Digit Span Forward and Backward parts were observed. CONCLUSIONS Our results support an association between poorer cognitive function and environmental airborne Mn exposure.
Collapse
Affiliation(s)
- Laura Ruiz-Azcona
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n., 39008 Santander, Cantabria, Spain
| | - Bohdana Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Andrea Expósito
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Ana Pozueta
- Service of Neurology, IDIVAL, University Hospital Marqués de Valdecilla, University of Cantabria, 39008 Santander, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain
| | - María García-Martínez
- Service of Neurology, IDIVAL, University Hospital Marqués de Valdecilla, University of Cantabria, 39008 Santander, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain
| | - Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n., 39008 Santander, Cantabria, Spain; Nursing Research Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain.
| |
Collapse
|