1
|
Rivera-Rivas LA, Florencio-Martínez LE, Romero-Meza G, Ortega-Ortiz RC, Manning-Cela RG, Carrero JC, Nepomuceno-Mejía T, Martínez-Calvillo S. Transcriptome and proteome changes triggered by overexpression of the transcriptional regulator Maf1 in the human pathogen Leishmania major. FASEB J 2024; 38:e23888. [PMID: 39157983 DOI: 10.1096/fj.202400636rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Maf1, originally described as a repressor of RNA polymerase III (RNAP III) transcription in yeast, participates in multiple functions across eukaryotes. However, the knowledge about Maf1 in protozoan parasites is scarce. To initiate the study of Maf1 in Leishmania major, we generated a cell line that overexpresses this protein. Overexpression of Maf1 led to a significant reduction in the abundance of tRNAs, 5S rRNA, and U4 snRNA, demonstrating that Maf1 regulates RNAP III activity in L. major. To further explore the roles played by Maf1 in this microorganism, global transcriptomic and proteomic changes due to Maf1 overexpression were determined using RNA-sequencing and label-free quantitative mass spectrometry. Compared to wild-type cells, differential expression was observed for 1082 transcripts (615 down-regulated and 467 up-regulated) and 205 proteins (132 down-regulated and 73 up-regulated) in the overexpressing cells. A correlation of 44% was found between transcriptomic and proteomic results. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins are mainly involved in transcription, cell cycle regulation, lipid metabolism and transport, ribosomal biogenesis, carbohydrate metabolism, autophagy, and cytoskeleton modification. Thus, our results suggest the involvement of Maf1 in the regulation of all these processes in L. major, as reported in other species, indicating that the functions performed by Maf1 were established early in eukaryotic evolution. Notably, our data also suggest the participation of L. major Maf1 in mRNA post-transcriptional control, a role that, to the best of our knowledge, has not been described in other organisms.
Collapse
Affiliation(s)
- Luis A Rivera-Rivas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Gabriela Romero-Meza
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Roberto C Ortega-Ortiz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
2
|
Gao J, Zhang H, Zhou L, Liu J, Zhuo E, Shen Y, Liu X, Shen Q. MANF Alleviates Sevoflurane-Induced Cognitive Impairment in Neonatal Mice by Modulating Microglial Activation and Polarization. Mol Neurobiol 2024; 61:3357-3368. [PMID: 37989984 DOI: 10.1007/s12035-023-03792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
The precise mechanism underlying sevoflurane-induced neurotoxicity and cognitive impairment remains largely unknown. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neuroprotective factor that has shown promise in various neurological disorders. However, its impact on sevoflurane-induced alterations has not been investigated. Thus, the objective of this study was to examine the effect of MANF in mitigating sevoflurane-induced neurotoxicity in young mice. Anesthesia with 3% sevoflurane 2 h daily was administered to young mice on postnatal day (P) 3, 6 and 9. We also constructed mono-macrophage-specific MANF knockout (MKO) mice in the mechanistic studies. Finally, the recombinant human MANF (rhMANF, 20 μg) protein was intraperitoneally administrated to neonatal mice before the sevoflurane anesthesia and the cognitive function, levels of pro-inflammatory cytokine and synapse-associated protein PSD95, the status of neural apoptosis, microglia activation and oxidative stress in hippocampus of the mice were investigated. The sevoflurane anesthesia increased the expression of endogenous MANF in the hippocampus, especially in microglia. MKO upregulated the expression of tumor necrosis factor-α (TNF-α), accelerated the neural apoptosis and the activation of microglia in hippocampus in young mice. MANF reversed the sevoflurane-induced cognitive impairment and inhibited the upregulation of TNF-α, the neural apoptosis and the reduction of the postsynaptic density protein-95 (PSD95) induced by sevoflurane anesthesia. Also, pretreatment with MANF alleviated the sevoflurane-induced activation of microglia and oxidative stress. Our current results demonstrated that MANF ameliorated neurotoxicity induced by the sevoflurane anesthesia in young mice, and such protective effect was associated with inhibition of microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Jie Gao
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Hefei, 230000, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230022, China
| | - Huiping Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Hefei, 230000, China
- Anhui Public Health Clinical Center, Hefei, 230032, China
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, 225009, Jiangsu, China
| | - Leiying Zhou
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Hefei, 230000, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230022, China
| | - Jiaqi Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Hefei, 230000, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230022, China
| | - Enba Zhuo
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Hefei, 230000, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230022, China
| | - Yujun Shen
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Xuesheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Hefei, 230000, China.
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230022, China.
| | - Qiying Shen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Hefei, 230000, China.
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
3
|
Wang J, Liu Z. Research progress on molecular mechanisms of general anesthetic-induced neurotoxicity and cognitive impairment in the developing brain. Front Neurol 2022; 13:1065976. [PMID: 36504660 PMCID: PMC9729288 DOI: 10.3389/fneur.2022.1065976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
General anesthetics-induced neurotoxicity and cognitive impairment in developing brains have become one of the current research hotspots in the medical science community. The underlying mechanisms are complex and involve various related molecular signaling pathways, cell mediators, autophagy, and other pathological processes. However, few drugs can be directly used to treat neurotoxicity and cognitive impairment caused by general anesthetics in clinical practice. This article reviews the molecular mechanism of general anesthesia-induced neurotoxicity and cognitive impairment in the neonatal brain after surgery in the hope of providing critical references for the treatments of clinical diseases.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,Baotou Clinical Medical College, Inner Mongolia Medical University, Baotou, China
| | - Zhihui Liu
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,*Correspondence: Zhihui Liu
| |
Collapse
|
4
|
Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022; 190:75-93. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
NRF2 (Nuclear factor E2 p45-related factor 2) is a stress responsive transcription factor lending cells resilience against oxidative, xenobiotic, and also nutrient or proteotoxic insults. AMPK (AMP-activated kinase), considered as prime regulator of cellular energy homeostasis, not only tunes metabolism to provide the cell at any time with sufficient ATP or building blocks, but also controls redox balance and inflammation. Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis. After a short introduction of the two players this narrative review paints the current picture on how AMPK and NRF2 signaling might interact on the molecular level, and highlights their possible crosstalk in selected examples of pathophysiology or bioactivity of drugs and phytochemicals.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Shara Natalia Sosa Cabrera
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|