1
|
Zhang X, Sun L, Dapar MLG, Zhang Q. Novel plasma cytokines identified and validated in children during lead exposure according to the new updated BLRV. Sci Rep 2024; 14:30323. [PMID: 39639084 PMCID: PMC11621361 DOI: 10.1038/s41598-024-81215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Lead is a pervasive environmental contaminant with significant health risks, particularly to children. It is known for its neurotoxic and immunotoxic effects, causing developmental, cognitive, and behavioral impairments. Despite extensive research, the mechanisms of lead toxicity remain unclear. Cytokines, which are critical in immune response and inflammation, have emerged as potential biomarkers for lead toxicity. The recent Centers for Disease Control and Prevention (CDC) update to the blood lead reference value (BLRV) to 3.5 µg/dL emphasizes the need to explore novel biomarkers and mechanisms. The study involved 100 healthy children aged 1 to 5 years, divided into two groups based on BLRV: elevated (≥ 3.5 µg/dL) and low (< 3.5 µg/dL). The research consisted of two phases: discovery and validation. Plasma samples were analyzed using RayBio® Human Cytokine Antibody Arrays and Enzyme-linked immunosorbent assay (ELISA) for cytokine levels. Ethical approval was obtained, and statistical analyses included t-tests, chi-squared tests, pearson correlations, and multivariate logistic regression. Protein-protein interaction (PPI), Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to explore the roles of significant differentially expressed proteins (DEPs). No significant differences in age, gender, or BMI between the two groups, but BLRV levels were significantly higher in the elevated BLRV group compared to the low BLRV group. In the discovery phase, significant changes in cytokine expression were identified, including increased levels of IL-6, IL-8, and IL-17, and decreased levels of BDNF, BMP-4, IGF-1, IL-7, IL-10, and Leptin. These findings were validated in the second phase using ELISA. Significant positive correlations were found between BLRV and IL-6, IL-8, and IL-17. Negative correlations were observed with BDNF, BMP-4, IGF-1, IL-7, IL-10, and Leptin. Multivariate regression confirmed that BLRV significantly affects these cytokine levels. PPI networks revealed that DEPs had strong interactions with multiple proteins, indicating their central role in lead toxicity. GO and KEGG analyses highlighted pathways related to neurotoxicity and inflammatory responses, including "negative regulation of myotube differentiation," "neurotrophin signaling pathway," and "alcoholism." This study provides insights into the role of cytokines as biomarkers for lead toxicity and offers a comprehensive analysis of the mechanisms involved. The findings underscore the importance of early detection and intervention based on updated BLRV thresholds.
Collapse
Affiliation(s)
- Xuezhong Zhang
- Department of Laboratory Medicine, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Lingling Sun
- Student/Adolescent Mental Health Center and Special needs ward, Zibo Mental Health Center (Fifth People's Hospital of Zibo City), Zibo, 255100, Shandong, China
| | | | - Qingchun Zhang
- Department of Laboratory Medicine, Zibo Central Hospital, Zibo, 255036, Shandong, China.
| |
Collapse
|
2
|
Naspolini NF, Vanzele PAR, Tótolo P, Schüroff PA, Fatori D, Vicentini Neto SA, Barata-Silva C, dos Santos LMG, Fujita A, Passos-Bueno MR, Beltrão-Braga PCB, Campos AC, Carvalho ACPLF, Polanczyk GV, Moreira JC, Taddei CR. Lead contamination in human milk affects infants' language trajectory: results from a prospective cohort study. Front Public Health 2024; 12:1450570. [PMID: 39193201 PMCID: PMC11347280 DOI: 10.3389/fpubh.2024.1450570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Infants growing up in low- and middle-income countries are at increased risk of suffering adverse childhood experiences, including exposure to environmental pollution and lack of cognitive stimulation. In this study, we aimed to examine the levels of metals in the human milk of women living in São Paulo City, Brazil, and determine the effects on infants' neurodevelopment. For such, a total of 185 human milk samples were analyzed for arsenic (As), lead (Pb), mercury (Hg), and cadmium (Cd) using inductively coupled plasma mass spectrometry (ICP-MS). We applied the Bayley scales of infant and toddler development Third Edition (Bayley-III) to assess developmental milestones. In our analysis, we found a mean (standard deviation) concentration of As in human milk equal to 2.76 (4.09) μg L-1, followed by Pb 2.09 (5.36) and Hg 1.96 (6.68). Cd was not detected. We observed that infants exposed to Pb presented language trajectories lower than non-exposed infants (β = -0.413; 95% CI -0.653, -0.173) after adjustment for infant age, maternal education, socioeconomic status, infant sex, and sample weights. Our results report As, Pb, and Hg contamination in human milk, and that infant exposure to Pb decreased infants' language development. These results evidence maternal-child environmental exposure and its detrimental impact on infants' health.
Collapse
Affiliation(s)
| | - Pedro A. R. Vanzele
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pedro Tótolo
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | | | - Daniel Fatori
- Department of Psychiatry, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo, Brazil
- Laboratorio de Psicopatologia e Terapeutica Psiquiatrica LIM-23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Santos Alves Vicentini Neto
- Department of Chemistry, National Institute for Quality Control in Health (INCQS), Oswaldo Cruz Foundation (INCQS/Fiocruz), Rio de Janeiro, Brazil
| | - Cristiane Barata-Silva
- Department of Chemistry, National Institute for Quality Control in Health (INCQS), Oswaldo Cruz Foundation (INCQS/Fiocruz), Rio de Janeiro, Brazil
| | - Lisia Maria Gobbo dos Santos
- Department of Chemistry, National Institute for Quality Control in Health (INCQS), Oswaldo Cruz Foundation (INCQS/Fiocruz), Rio de Janeiro, Brazil
| | - André Fujita
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
- Division of Network AI Statistics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Maria Rita Passos-Bueno
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Patricia C. B. Beltrão-Braga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institut Pasteur de São Paulo, São Paulo, Brazil
| | - Alline C. Campos
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - André C. P. L. F. Carvalho
- Department of Applied Mathematics and Statistics, Institute of Mathematics and Computer Sciences, University of São Paulo, Sao Carlos, Brazil
| | - Guilherme V. Polanczyk
- Department of Psychiatry, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo, Brazil
| | - Josino Costa Moreira
- Department of Chemistry, National Institute for Quality Control in Health (INCQS), Oswaldo Cruz Foundation (INCQS/Fiocruz), Rio de Janeiro, Brazil
| | - Carla R. Taddei
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Guo JT, Li HY, Cheng C, Shi JX, Ruan HN, Li J, Liu CM. Lead-induced liver fibrosis and inflammation in mice by the AMPK/MAPKs/NF-κB and STAT3/TGF-β1/Smad2/3 pathways: the role of Isochlorogenic acid a. Toxicol Res (Camb) 2024; 13:tfae072. [PMID: 38737339 PMCID: PMC11081073 DOI: 10.1093/toxres/tfae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Lead (Pb) is a nonessential heavy metal, which can cause many health problems. Isochlorogenic acid A (ICAA), a phenolic acid present in tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including anti-oxidant, antiviral, anti-inflammatory and antifibrotic functions. Thus, the purpose of our study was to determine if ICAA could prevent Pb-induced hepatotoxicity in ICR mice. An evaluation was performed on oxidative stress, inflammation and fibrosis, and related signaling. The results indicate that ICAA attenuates Pb-induced abnormal liver function. ICAA reduced liver fibrosis, inflammation and oxidative stress caused by Pb. ICAA abated Pb-induced fibrosis and decreased inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). ICAA abrogated reductions in activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Masson staining revealed that ICAA reduced collagen fiber deposition in Pb-induced fibrotic livers. Western blot and immunohistochemistry analyses showed ICAA increased phosphorylated AMP-activated protein kinase (p-AMPK) expression. ICAA also reduced the expression of collagen I, α-smooth muscle actin (α-SMA), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-jun N-terminal kinase (p-JNK), p-p38, phosphorylated signal transducer and phosphorylated activator of transcription 3 (p-STAT3), transforming growth factor β1 (TGF-β1), and p-Smad2/3 in livers of mice. Overall, ICAA ameliorates Pb-induced hepatitis and fibrosis by inhibiting the AMPK/MAPKs/NF-κB and STAT3/TGF-β1/Smad2/3 pathways.
Collapse
Affiliation(s)
- Jun-Tao Guo
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Han-Yu Li
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jia-Xue Shi
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Hai-Nan Ruan
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| |
Collapse
|
4
|
Tian C, Qiu Y, Zhao Y, Fu L, Xia D, Ying J. Selenium protects against Pb-induced renal oxidative injury in weaning rats and human renal tubular epithelial cells through activating NRF2. J Trace Elem Med Biol 2024; 83:127420. [PMID: 38432121 DOI: 10.1016/j.jtemb.2024.127420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Lead (Pb) poisoning posing a crucial health risk, especially among children, causing devastating damage not only to brain development, but also to kidney function. Thus, an urgent need persists to identify highly effective, safe, and low-toxicity drugs for the treatment of Pb poisoning. The present study focused on exploring the protective effects of Se on Pb-induced nephrotoxicity in weaning rats and human renal tubular epithelial cells, and investigated the possible mechanisms. METHODS Forty weaning rats were randomly divided into four groups in vivo: control, Pb-exposed, Pb+Se and Se. Serum creatinine (Cr), urea nitrogen (BUN) and hematoxylin and eosin (H&E) staining were performed to evaluate renal function. The activities of antioxidant enzymes in the kidney tissue were determined. In vitro experiments were performed using human renal tubular epithelial cells (HK-2 cells). The cytotoxicity of Pb and Se was detected by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Inverted fluorescence microscope was used to investigate cell morphological changes and the fluorescence intensity of reactive oxygen species (ROS). The oxidative stress parameters were measured by a multi-detection reader. Nuclear factor-erythroid-2-related factor (NRF2) signaling pathways were measured by Western blot and reverse transcription polymerase chain reaction (RT-PCR) in HK-2 cells. RESULTS We found that Se alleviated Pb-induced kidney injury by relieving oxidative stress and reducing the inflammatory index. Se significantly increased the activity of the antioxidant enzymes glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), whereas it decreased the excessive release of malondialdehyde (MDA) in the kidneys of weaning rats and HK-2 cells. Additionally, Se enhanced the antioxidant defense systems via activating the NRF2 transcription factor, thereby promoting the to downstream expression of heme oxygenase 1. Furthermore, genes encoding glutamate-cysteine ligase synthetase catalytic (GCLC), glutamate-cysteine ligase synthetase modifier (GCLM) and NADPH quinone oxidoreductase 1 (NQO1), downstream targets of NRF2, formed a positive feedback loop with NRF2 during oxidative stress responses. The MTT assay results revealed a significant decrease in cell viability with Se treatment, and the cytoprotective role of Se was blocked upon knockdown of NRF2 by small interfering RNA (siRNA). MDA activity results also showed that NRF2 knockdown inhibited the NRF2-dependent transcriptional activity of Se. CONCLUSIONS Our findings demonstrate that Se ameliorated Pb-induced nephrotoxicity by reducing oxidative stress both in vivo and in vitro. The molecular mechanism underlying Se's action in Pb-induced kidney injury is related to the activation of the NRF2 transcription factor and the activity of antioxidant enzymes, ultimately suppressing ROS accumulation.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Yu Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Junjie Ying
- Department of Urology, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
5
|
Harshitha P, Bose K, Dsouza HS. Influence of lead-induced toxicity on the inflammatory cytokines. Toxicology 2024; 503:153771. [PMID: 38452865 DOI: 10.1016/j.tox.2024.153771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Lead (Pb2+) is a hazardous heavy metal that is pervasive in the human environment as a result of anthropogenic activity, and poses serious health risks, particularly in children. Due to its innumerable unique physical and chemical properties, it has various applications; therefore, it has become a common environmental pollutant. Lead may cause oxidative stress, and accumulating evidence indicates that oxidative stress influences the pathophysiology of lead poisoning, also called plumbism. The immune system is continually exposed to various environmental pathogens and xenobiotics, including heavy metals such as lead, and appears to be one of the most vulnerable targets. After being exposed to lead, cells are subjected to oxidative stress as a result of reactive oxygen species (ROS) production. When the generation and consumption of ROS are out of equilibrium, various cell structures, particularly phospholipids are disrupted leading to lipid peroxidation. Various inflammatory signalling pathways are activated as a consequence, along with reduced disease resistance, inflammation, autoimmunity, sensitization and disruption of the cell-mediated and humoral immune systems. Lead negatively affects the metabolism of cytokines, including the interleukins IL-2, IL-1b, IL-6, IL-4, IL-8, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN), as well as the expression and functioning of inflammatory enzymes such as cyclooxygenases. However, the cause of toxicity depends on the kind of lead, dosage, route of entry, exposure period, age, host and genetic predisposition.
Collapse
Affiliation(s)
- P Harshitha
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kalpita Bose
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
6
|
Li Y, Liu A, Chen K, Li L, Zhang X, Zou F, Zhang X, Meng X. Sodium butyrate alleviates lead-induced neuroinflammation and improves cognitive and memory impairment through the ACSS2/H3K9ac/BDNF pathway. ENVIRONMENT INTERNATIONAL 2024; 184:108479. [PMID: 38340407 DOI: 10.1016/j.envint.2024.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Lead is an environmentally widespread neurotoxic pollutant. Although the neurotoxicity of lead has been found to be closely associated with metabolic disorders, the effects of short-chain fatty acids on the neurotoxicity of lead and its mechanisms have not yet been explored. In this study, the results of open field tests and Morris water maze tests demonstrated that chronic lead exposure caused learning and memory deficits and anxiety-like symptoms in mice. The serum butyric acid content of lead-treated mice decreased in a dose-dependent manner, and oral administration of butyrate significantly improved cognitive memory impairment and anxiety symptoms in lead-exposed mice. Moreover, butyrate alleviated neuroinflammation caused by lead exposure by inhibiting the STAT3 signaling in microglia. Butyrate also promoted the expression of acetyl-CoA synthetase ACSS2 in hippocampal neurons, thereby increasing the content of acetyl-CoA and restoring the expression of both histone H3K9ac and the downstream BDNF. We also found that the median butyric acid concentration in high-lead exposure humans was remarkably lower than that in the low-lead exposure humans (45.16 μg/L vs. 60.92 μg/L, P < 0.01), and that butyric acid significantly mediated the relationship of lead exposure with the Montreal cognitive assessment scores, with a contribution rate of 27.57 %. In conclusion, our results suggest that butyrate supplementation is a possible therapeutic strategy for lead-induced neurotoxicity.
Collapse
Affiliation(s)
- Yunting Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Anfei Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Kaiju Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lifan Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshun Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingmei Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Wu C, Wang J, Luo X, Wang B, Zhang X, Song Y, Zhang K, Zhang X, Sun M. Lead exposure induced transgenerational developmental neurotoxicity by altering genome methylation in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115991. [PMID: 38237395 DOI: 10.1016/j.ecoenv.2024.115991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/05/2024]
Abstract
Heavy metal toxicity is a significant global health concern, with particular attention given to lead (Pb) exposure due to its adverse effects on cognitive development, especially in children exposed to low concentrations. While Pb neurotoxicity has been extensively studied, the analysis and molecular mechanisms underlying the transgenerational effects of Pb exposure-induced neurotoxicity remain poorly understood. In this study, we utilized Drosophila, a powerful developmental animal model, to investigate this phenomenon. Our findings demonstrated that Pb exposure during the developmental stage had a profound effect on the neurodevelopment of F0 fruit flies. Specifically, we observed a loss of correlation between the terminal motor area and muscle fiber area, along with an increased frequency of the β-lobe midline crossing phenotype in mushroom bodies. Western blot analysis indicated altered expression levels of synaptic vesicle proteins, with a decrease in Synapsin (SYN) and an increase in Bruchpilot (BRP) expression, suggesting changes in synaptic vesicle release sites. These findings were corroborated by electrophysiological data, showing an increase in the amplitude of evoked excitatory junctional potential (EJP) and an increase in the frequency of spontaneous excitatory junctional potential (mEJP) following Pb exposure. Importantly, our results further confirmed that the developmental neurotoxicity resulting from grandparental Pb exposure exhibited a transgenerational effect. The F3 offspring displayed neurodevelopmental defects, synaptic function abnormalities, and repetitive behavior despite lacking direct Pb exposure. Our MeDIP-seq analysis further revealed significant alterations in DNA methylation levels in several neurodevelopmental associated genes (eagle, happyhour, neuroglian, bazooka, and spinophilin) in the F3 offspring exposed to Pb. These findings suggest that DNA methylation modifications may underlie the inheritance of acquired phenotypic traits resulting from environmental Pb exposure.
Collapse
Affiliation(s)
- Chunyan Wu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxiao Luo
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xing Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyan Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
8
|
Albekairi TH, Alanazi MM, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Mazroua HA, Aldossari AA, Almanaa TN, Alwetaid MY, Alqinyah M, Alnefaie HO, Ahmad SF. Cadmium exposure exacerbates immunological abnormalities in a BTBR T + Itpr3 tf/J autistic mouse model by upregulating inflammatory mediators in CD45R-expressing cells. J Neuroimmunol 2024; 386:578253. [PMID: 38064869 DOI: 10.1016/j.jneuroim.2023.578253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by behavior, learning, communication, and social interaction abnormalities in various situations. Individuals with impairments usually exhibit restricted and repetitive actions. The actual cause of ASD is yet unknown. It is believed, however, that a mix of genetic and environmental factors may play a role in its development. Certain metals have been linked to the development of neurological diseases, and the prevalence of ASD has shown a positive association with industrialization. Cadmium chloride (Cd) is a neurotoxic chemical linked to cognitive impairment, tremors, and neurodegenerative diseases. The BTBR T+ Itpr3tf/J (BTBR) inbred mice are generally used as a model for ASD and display a range of autistic phenotypes. We looked at how Cd exposure affected the signaling of inflammatory mediators in CD45R-expressing cells in the BTBR mouse model of ASD. In this study, we looked at how Cd affected the expression of numerous markers in the spleen, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. Furthermore, we investigated the effect of Cd exposure on the expression levels of numerous mRNA molecules in brain tissue, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. The RT-PCR technique was used for this analysis. Cd exposure increased the number of CD45R+IFN-γ+, CD45R+IL-6+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+GM-CSF+, CD45R+iNOS+, and CD45R+Notch1+ cells in the spleen of BTBR mice. Cd treatment also enhanced mRNA expression in brain tissue for IFN-γ, IL-6, NF-κB, GM-CSF, iNOS, MCP-1, and Notch1. In general, Cd increases the signaling of inflammatory mediators in BTBR mice. This study is the first to show that Cd exposure causes immune function dysregulation in the BTBR ASD mouse model. As a result, our study supports the role of Cd exposure in the development of ASD.
Collapse
Affiliation(s)
- Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hajar O Alnefaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
9
|
Mu X, Liu Z, Zhao X, Chen L, Jia Q, Wang C, Li T, Guo Y, Qiu J, Qian Y. Bisphenol analogues induced social defects and neural impairment in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166307. [PMID: 37586522 DOI: 10.1016/j.scitotenv.2023.166307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
There is evidence in humans that endocrine disrupting chemicals exposure, such as bisphenol A (BPA), is tied to social behavior impacts when evaluated in early life stage. However, the potential social impact of BPA alternatives and its association with central nervous system (CNS) is poorly understood. Here, we performed behavioral test for zebrafish that are continuously exposed to environmental relevant concentrations (5 and 500 ng/L) of BPA, BPF, and BPAF since embryonic stage. Surprisingly, significant social behavior defects, including increased social distance and decreased contact time, were identified in zebrafish treated by 500 ng/L BPAF and BPA. These behavioral changes were accompanied by apparent histological injury, microglia activation, enhanced apoptosis and neuron loss in brain. The gut-brain transcriptional profile showed that genes involved in neuronal development pathways were up-regulated in all bisphenol analogs treatments, indicating a protective phenotype of CNS; however, these pathways were inhibited in gut. Besides, a variety of key regulators in the gut-brain regulation were identified based on protein interaction prediction, such as rac1-limk1, insrb1 and fosab. These findings implicated that the existence of bisphenol analogues in water would influence the social life of fish, and revealed a potential role of gut-brain transcriptional alteration in mediating this effect.
Collapse
Affiliation(s)
- Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qi Jia
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, China
| | - Yuanming Guo
- Zhejiang Marine Fisheries Research Institute, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
10
|
Assiri MA, Albekairi TH, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Shahid M, Aldossari AA, Almutairi MM, Almanaa TN, Alwetaid MY, Ahmad SF. The Exposure to Lead (Pb) Exacerbates Immunological Abnormalities in BTBR T + Itpr 3tf/J Mice through the Regulation of Signaling Pathways Relevant to T Cells. Int J Mol Sci 2023; 24:16218. [PMID: 38003408 PMCID: PMC10671427 DOI: 10.3390/ijms242216218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental illness characterized by abnormal social interactions, communication difficulties, and repetitive and limited behaviors or interests. The BTBR T+ Itpr3tf/J (BTBR) mice have been used extensively to research the ASD-like phenotype. Lead (Pb) is a hazardous chemical linked to organ damage in the human body. It is regarded as one of the most common metal exposure sources and has been connected to the development of neurological abnormalities. We used flow cytometry to investigate the molecular mechanism behind the effect of Pb exposure on subsets of CD4+ T cells in the spleen expressing IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Furthermore, using RT-PCR, we studied the effect of Pb on the expression of numerous genes in brain tissue, including IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Pb exposure increased the population of CD4+IFN-γ+, CD4+T-bet+, CD4+STAT1+, CD4+STAT4+, CD4+IL-9+, CD4+IRF4+, CD4+IL-22+, and CD4+AhR+ cells in BTBR mice. In contrast, CD4+IL-10+ and CD4+Foxp3+ cells were downregulated in the spleen cells of Pb-exposed BTBR mice compared to those treated with vehicle. Furthermore, Pb exposure led to a significant increase in IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, and AhR mRNA expression in BTBR mice. In contrast, IL-10 and Foxp3 mRNA expression was significantly lower in those treated with the vehicle. Our data suggest that Pb exposure exacerbates immunological dysfunctions associated with ASD. These data imply that Pb exposure may increase the risk of ASD.
Collapse
Affiliation(s)
- Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.Y.A.)
| | - Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.Y.A.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| |
Collapse
|
11
|
Mei Z, Liu G, Zhao B, He Z, Gu S. Emerging roles of epigenetics in lead-induced neurotoxicity. ENVIRONMENT INTERNATIONAL 2023; 181:108253. [PMID: 37864902 DOI: 10.1016/j.envint.2023.108253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Lead is a common environmental heavy metal contaminant. Humans are highly susceptible to lead accumulation in the body, which causes nervous system damage and leads to a variety of nervous system diseases, such as Alzheimer's disease, Parkinson's disease, and autism spectrum disorder. Recent research has focused on the mechanisms of lead-induced neurotoxicity at multiple levels, including DNA methylation, histone modifications, and non-coding RNAs, which are involved in various lead-induced nervous system diseases. We reviewed the latest articles and summarised the emerging roles of DNA methylation, histone modification, and non-coding RNAs in lead-induced neurotoxicity. Our summary provides a theoretical basis and directions for future research on the prevention, diagnosis, and treatment of lead-induced neurological diseases.
Collapse
Affiliation(s)
- Zongqin Mei
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Guofen Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Bo Zhao
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China.
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China.
| |
Collapse
|
12
|
Alwetaid MY, Almanaa TN, Bakheet SA, Ansari MA, Nadeem A, Attia SM, Hussein MH, Ahmad SF. Aflatoxin B 1 Exposure Aggravates Neurobehavioral Deficits and Immune Dysfunctions of Th1, Th9, Th17, Th22, and T Regulatory Cell-Related Transcription Factor Signaling in the BTBR T +Itpr3 tf/J Mouse Model of Autism. Brain Sci 2023; 13:1519. [PMID: 38002479 PMCID: PMC10669727 DOI: 10.3390/brainsci13111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by impaired communication, reciprocal social interactions, restricted sociability deficits, and stereotyped behavioral patterns. Environmental factors and genetic susceptibility have been implicated in an increased risk of ASD. Aflatoxin B1 (AFB1) is a typical contaminant of food and feed that causes severe immune dysfunction in humans and animals. Nevertheless, the impact of ASD on behavioral and immunological responses has not been thoroughly examined. To investigate this phenomenon, we subjected BTBR T+Itpr3tf/J (BTBR) mice to AFB1 and evaluated their marble-burying and self-grooming behaviors and their sociability. The exposure to AFB1 resulted in a notable escalation in marble-burying and self-grooming activities while concurrently leading to a decline in social contacts. In addition, we investigated the potential molecular mechanisms that underlie the impact of AFB1 on the production of Th1 (IFN-γ, STAT1, and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A, IL-21, RORγT, and STAT3), Th22 (IL-22, AhR, and TNF-α), and T regulatory (Treg) (IL-10, TGF-β1, and FoxP3) cells in the spleen. This was achieved using RT-PCR and Western blot analyses to assess mRNA and protein expression in brain tissue. The exposure to AFB1 resulted in a significant upregulation of various immune-related factors, including IFN-γ, STAT1, T-bet, IL-9, IRF4, IL-17A, IL-21, RORγ, STAT3, IL-22, AhR, and TNF-α in BTBR mice. Conversely, the production of IL-10, TGF-β1, and FoxP3 by CD4+ T cells was observed to be downregulated. Exposure to AFB1 demonstrated a notable rise in Th1/Th9/Th22/Th17 levels and a decrease in mRNA and protein expression of Treg. The results above underscore the significance of AFB1 exposure in intensifying neurobehavioral and immunological abnormalities in BTBR mice, hence indicating the necessity for a more comprehensive investigation into the contribution of AFB1 to the development of ASD.
Collapse
Affiliation(s)
- Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H. Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Shi JX, Cheng C, Ruan HN, Li J, Liu CM. Isochlorogenic acid B alleviates lead-induced anxiety, depression and neuroinflammation in mice by the BDNF pathway. Neurotoxicology 2023; 98:1-8. [PMID: 37385299 DOI: 10.1016/j.neuro.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Lead (Pb) can cause neurobehavioral abnormalities. Isochlorogenic acid B (ICAB), a dietary flavonoid found in tea, sweet potato, artichoke, propolis and several plants, exhibited potential neuroprotective properties. In this study, we aimed to investigate the mechanisms of Pb-induced anxiety, depression and neuroinflammation, and the neuroprotective effect of ICAB in mouse brains. We found that ICAB supplementation significantly improved behavioral abnormalities, neuroinflammation and oxidative stress induced by Pb. ICAB attenuated Pb-induced anxiety and depression behavior in mice, as indicated by decreasing the duration of immobility in tail suspension test and increasing the crossing number, rearing number and time in center in open field test. Accordingly, ICAB inhibited oxidative stress by decreasing malondialdehyde (MDA) level and increasing the antioxidant enzyme activity. ICAB also inhibited Pb-induced inflammation in brain, as indicated by decreasing the tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels. ICAB increased the expression levels of brain derived neurotrophic factor (BDNF) and the phosphorylation of cAMP-responsive element binding protein (CREB), phosphoinositide 3-kinases-protein kinase B (PI3K/AKT). Furthermore, ICAB decreased the levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), glycogen synthase kinase-3 beta (GSK-3β) and p38. Collectively, this study demonstrated that ICAB improved Pb-induced anxiety, depression, neuroinflammation and oxidative stress by regulating the BDNF signaling pathway.
Collapse
Affiliation(s)
- Jia-Xue Shi
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Hai-Nan Ruan
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China.
| |
Collapse
|
14
|
Alanazi MM, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Mazroua HA, Aldossari AA, Almutairi MM, Albekairi TH, Hussein MH, Al-Hamamah MA, Ahmad SF. Cadmium Exposure Is Associated with Behavioral Deficits and Neuroimmune Dysfunction in BTBR T+ Itpr3tf/J Mice. Int J Mol Sci 2023; 24:ijms24076575. [PMID: 37047547 PMCID: PMC10095149 DOI: 10.3390/ijms24076575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Autism spectrum disorders (ASD) are neurobehavioral disabilities characterized by impaired social interactions, poor communication skills, and restrictive/repetitive behaviors. Cadmium is a common heavy metal implicated in ASD. In this study, we investigated the effects of Cd exposure on BTBR T+ Itpr3tf/J (BTBR) mice, an ASD model. We looked for changes in repetitive behaviors and sociability through experiments. We also explored the molecular mechanisms underlying the effects of Cd exposure, focusing on proinflammatory cytokines and pathways. Flow cytometry measured IL-17A-, IL-17F-, IL-21-, TNF-α-, STAT3-, and RORγt-expressing CD4+ T cells from the spleens of experimental mice. We then used RT-PCR to analyze IL-17A, IL-17F, IL-21, TNF-α, STAT3, and RORγ mRNA expression in the brain. The results of behavioral experiments showed that Cd exposure significantly increased self-grooming and marble-burying in BTBR mice while decreasing social interactions. Cd exposure also significantly increased the number of CD4+IL-17A+, CD4+IL-17F+, CD4+IL-21+, CD4+TNF-α+, CD4+STAT3+, and CD4+RORγt+ cells, while upregulating the mRNA expression of the six molecules in the brain. Overall, our results suggest that oral exposure to Cd aggravates behavioral and immune abnormalities in an ASD animal model. These findings have important implications for ASD etiology and provide further evidence of heavy metals contributing to neurodevelopmental disorders through proinflammatory effects.
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A. Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H. Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|