1
|
Liu M, Du X, Hu J, Liang X, Wang H. Utilization of convolutional neural networks to analyze microscopic images for high-throughput screening of mesenchymal stem cells. Open Life Sci 2024; 19:20220859. [PMID: 39005738 PMCID: PMC11245879 DOI: 10.1515/biol-2022-0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 07/16/2024] Open
Abstract
This work investigated the high-throughput classification performance of microscopic images of mesenchymal stem cells (MSCs) using a hyperspectral imaging-based separable convolutional neural network (CNN) (H-SCNN) model. Human bone marrow mesenchymal stem cells (hBMSCs) were cultured, and microscopic images were acquired using a fully automated microscope. Flow cytometry (FCT) was employed for functional classification. Subsequently, the H-SCNN model was established. The hyperspectral microscopic (HSM) images were created, and the spatial-spectral combined distance (SSCD) was employed to derive the spatial-spectral neighbors (SSNs) for each pixel in the training set to determine the optimal parameters. Then, a separable CNN (SCNN) was adopted instead of the classic convolutional layer. Additionally, cultured cells were seeded into 96-well plates, and high-functioning hBMSCs were screened using both manual visual inspection (MV group) and the H-SCNN model (H-SCNN group), with each group consisting of 96 samples. FCT served as the benchmark to compare the area under the curve (AUC), F1 score, accuracy (Acc), sensitivity (Sen), specificity (Spe), positive predictive value (PPV), and negative predictive value (NPV) between the manual and model groups. The best classification Acc was 0.862 when using window size of 9 and 12 SSNs. The classification Acc of the SCNN model, ResNet model, and VGGNet model gradually increased with the increase in sample size, reaching 89.56 ± 3.09, 80.61 ± 2.83, and 80.06 ± 3.01%, respectively at the sample size of 100. The corresponding training time for the SCNN model was significantly shorter at 21.32 ± 1.09 min compared to ResNet (36.09 ± 3.11 min) and VGGNet models (34.73 ± 3.72 min) (P < 0.05). Furthermore, the classification AUC, F1 score, Acc, Sen, Spe, PPV, and NPV were all higher in the H-SCNN group, with significantly less time required (P < 0.05). Microscopic images based on the H-SCNN model proved to be effective for the classification assessment of hBMSCs, demonstrating excellent performance in classification Acc and efficiency, enabling its potential to be a powerful tool in future MSCs research.
Collapse
Affiliation(s)
- MuYun Liu
- National Engineering Research Center of Foundational Technologies for CGT Industry, Shenzhen, Guangdong, China
| | - XiangXi Du
- Shenzhen Cellauto Automation Co., Ltd., Shenzhen, Guangdong, China
| | - JunYuan Hu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, Guangdong, China
| | - Xiao Liang
- National Engineering Research Center of Foundational Technologies for CGT Industry, Shenzhen, Guangdong, China
| | - HaiJun Wang
- Shenzhen Cellauto Automation Co., Ltd., Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Park JM, Rahmati M, Lee SC, Shin JI, Kim YW. Effects of mesenchymal stem cell on dopaminergic neurons, motor and memory functions in animal models of Parkinson's disease: a systematic review and meta-analysis. Neural Regen Res 2024; 19:1584-1592. [PMID: 38051903 PMCID: PMC10883506 DOI: 10.4103/1673-5374.387976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, and although restoring striatal dopamine levels may improve symptoms, no treatment can cure or reverse the disease itself. Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson's disease. Mesenchymal stem cells are considered a promising option due to fewer ethical concerns, a lower risk of immune rejection, and a lower risk of teratogenicity. We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function, memory, and preservation of dopaminergic neurons in a Parkinson's disease animal model. We searched bibliographic databases (PubMed/MEDLINE, Embase, CENTRAL, Scopus, and Web of Science) to identify articles and included only peer-reviewed in vivo interventional animal studies published in any language through June 28, 2023. The study utilized the random-effect model to estimate the 95% confidence intervals (CI) of the standard mean differences (SMD) between the treatment and control groups. We use the systematic review center for laboratory animal experimentation's risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment. A total of 33 studies with data from 840 Parkinson's disease model animals were included in the meta-analysis. Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test. Among the stem cell types, the bone marrow MSCs with neurotrophic factor group showed largest effect size (SMD [95% CI] = -6.21 [-9.50 to -2.93], P = 0.0001, I2 = 0.0 %). The stem cell treatment group had significantly more tyrosine hydroxylase positive dopaminergic neurons in the striatum ([95% CI] = 1.04 [0.59 to 1.49], P = 0.0001, I2 = 65.1 %) and substantia nigra (SMD [95% CI] = 1.38 [0.89 to 1.87], P = 0.0001, I2 = 75.3 %), indicating a protective effect on dopaminergic neurons. Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route (SMD [95% CI] = -2.59 [-3.25 to -1.94], P = 0.0001, I2 = 74.4 %). The memory test showed significant improvement only in the intravenous route (SMD [95% CI] = 4.80 [1.84 to 7.76], P = 0.027, I2 = 79.6 %). Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson's disease. Further research is required to determine the optimal stem cell types, modifications, transplanted cell numbers, and delivery methods for these protocols.
Collapse
Affiliation(s)
- Jong Mi Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Zhang Y, Wei R, Li Z, Li X, Zhang K, Ge Y, Kong X, Liu X, Chen G. Melatonin improves maternal sleep deprivation-induced learning and memory impairment, inflammation, and synaptic dysfunction in murine male adult offspring. Brain Behav 2024; 14:e3515. [PMID: 38702895 PMCID: PMC11069022 DOI: 10.1002/brb3.3515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.
Collapse
Affiliation(s)
- Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Ru‐Meng Wei
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Zong‐Yin Li
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xue‐Yan Li
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Kai‐Xuan Zhang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yi‐Jun Ge
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xiao‐Yi Kong
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xue‐Chun Liu
- Department of NeurologyThe Second People's Hospital of HefeiHefei Hospital Affiliated to Anhui Medical UniversityHefeiAnhuiChina
| | - Gui‐Hai Chen
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
4
|
Liu X, Shen L, Wan M, Xie H, Wang Z. Peripheral extracellular vesicles in neurodegeneration: pathogenic influencers and therapeutic vehicles. J Nanobiotechnology 2024; 22:170. [PMID: 38610012 PMCID: PMC11015679 DOI: 10.1186/s12951-024-02428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis epitomize a class of insidious and relentless neurological conditions that are difficult to cure. Conventional therapeutic regimens often fail due to the late onset of symptoms, which occurs well after irreversible neurodegeneration has begun. The integrity of the blood-brain barrier (BBB) further impedes efficacious drug delivery to the central nervous system, presenting a formidable challenge in the pharmacological treatment of NDDs. Recent scientific inquiries have shifted focus toward the peripheral biological systems, investigating their influence on central neuropathology through the lens of extracellular vesicles (EVs). These vesicles, distinguished by their ability to breach the BBB, are emerging as dual operatives in the context of NDDs, both as conveyors of pathogenic entities and as prospective vectors for therapeutic agents. This review critically summarizes the burgeoning evidence on the role of extracerebral EVs, particularly those originating from bone, adipose tissue, and gut microbiota, in modulating brain pathophysiology. It underscores the duplicity potential of peripheral EVs as modulators of disease progression and suggests their potential as novel vehicles for targeted therapeutic delivery, positing a transformative impact on the future landscape of NDD treatment strategies. Search strategy A comprehensive literature search was conducted using PubMed, Web of Science, and Scopus from January 2000 to December 2023. The search combined the following terms using Boolean operators: "neurodegenerative disease" OR "Alzheimer's disease" OR "Parkinson's disease" OR "Amyotrophic lateral sclerosis" AND "extracellular vesicles" OR "exosomes" OR "outer membrane vesicles" AND "drug delivery systems" AND "blood-brain barrier". MeSH terms were employed when searching PubMed to refine the results. Studies were included if they were published in English, involved human subjects, and focused on the peripheral origins of EVs, specifically from bone, adipose tissue, and gut microbiota, and their association with related diseases such as osteoporosis, metabolic syndrome, and gut dysbiosis. Articles were excluded if they did not address the role of EVs in the context of NDDs or did not discuss therapeutic applications. The titles and abstracts of retrieved articles were screened using a dual-review process to ensure relevance and accuracy. The reference lists of selected articles were also examined to identify additional relevant studies.
Collapse
Affiliation(s)
- Xixi Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, Hunan, 410008, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| |
Collapse
|
5
|
Mendes-Pinheiro B, Campos J, Marote A, Soares-Cunha C, Nickels SL, Monzel AS, Cibrão JR, Loureiro-Campos E, Serra SC, Barata-Antunes S, Duarte-Silva S, Pinto L, Schwamborn JC, Salgado AJ. Treating Parkinson's Disease with Human Bone Marrow Mesenchymal Stem Cell Secretome: A Translational Investigation Using Human Brain Organoids and Different Routes of In Vivo Administration. Cells 2023; 12:2565. [PMID: 37947643 PMCID: PMC10650433 DOI: 10.3390/cells12212565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder, characterized by the progressive loss of dopaminergic neurons from the nigrostriatal system. Currently, there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Mesenchymal stem cells (MSCs) are one of the most extensively studied cell sources for regenerative medicine applications, particularly due to the release of soluble factors and vesicles, known as secretome. The main goal of this work was to address the therapeutic potential of the secretome collected from bone-marrow-derived MSCs (BM-MSCs) using different models of the disease. Firstly, we took advantage of an optimized human midbrain-specific organoid system to model PD in vitro using a neurotoxin-induced model through 6-hydroxydopamine (6-OHDA) exposure. In vivo, we evaluated the effects of BM-MSC secretome comparing two different routes of secretome administration: intracerebral injections (a two-site single administration) against multiple systemic administration. The secretome of BM-MSCs was able to protect from dopaminergic neuronal loss, these effects being more evident in vivo. The BM-MSC secretome led to motor function recovery and dopaminergic loss protection; however, multiple systemic administrations resulted in larger therapeutic effects, making this result extremely relevant for potential future clinical applications.
Collapse
Affiliation(s)
- Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sarah L. Nickels
- Luxembourg Centre for Systems and Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Anna S. Monzel
- Luxembourg Centre for Systems and Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sofia C. Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems and Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| |
Collapse
|