1
|
Kwon K, Cho H, Lee S, Cho EJ, Yu W, Kok CYL, Je HS, Kim J, Cho HJ, Kwon T. Adaptive cellular response of the substantia nigra dopaminergic neurons upon age-dependent iron accumulation. Aging Cell 2022; 21:e13694. [PMID: 35984750 PMCID: PMC9470899 DOI: 10.1111/acel.13694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/20/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Progressive iron accumulation in the substantia nigra in the aged human brain is a major risk factor for Parkinson's disease and other neurodegenerative diseases. Heavy metals, such as iron, produce reactive oxygen species and consequently oxidative stress in cells. It is unclear, however, how neurons in the substantia nigra are protected against the age-related, excessive accumulation of iron. In this study, we examined the cellular response of the substantia nigra against age-related iron accumulation in rats of different ages. Magnetic resonance imaging confirmed the presence of iron in 6-month-old rats; in 15-month-old rats, iron accumulation significantly increased, particularly in the midbrain. Transcriptome analysis of the region, in which iron deposition was observed, revealed an increase in stress response genes in older animals. To identify the genes related to the cellular response to iron, independent of neurodevelopment, we exposed the neuroblastoma cell line SH-SY5Y to a similar quantity of iron and then analyzed their transcriptomic responses. Among various stress response pathways altered by iron overloading in the rat brain and SH-SY5Y cells, the genes associated with topologically incorrect protein responses were significantly upregulated. Knockdown of HERPUD1 and CLU in this pathway increased susceptibility to iron-induced cellular stress, thus demonstrating their roles in preventing iron overload-induced toxicity. The current study details the neuronal response to excessive iron accumulation, which is associated with age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Kujin Kwon
- Department of Biomedical Engineering, College of Information and BiotechnologyUlsan National Institute of Science and Technology (UNIST)UlsanKorea
| | - Hwapyeong Cho
- Department of Biomedical Engineering, College of Information and BiotechnologyUlsan National Institute of Science and Technology (UNIST)UlsanKorea
| | - Soyeon Lee
- Department of Biological Sciences, College of Information and BiotechnologyUlsan National Institute of Science and Technology (UNIST)UlsanKorea
| | - Eun Jeong Cho
- Department of Biological Sciences, College of Information and BiotechnologyUlsan National Institute of Science and Technology (UNIST)UlsanKorea
| | - Weonjin Yu
- Neuroscience and Behavioral Disorders ProgramDuke‐National University of Singapore (NUS) Medical SchoolSingapore CitySingapore
| | - Catherine Yen Li Kok
- Neuroscience and Behavioral Disorders ProgramDuke‐National University of Singapore (NUS) Medical SchoolSingapore CitySingapore
| | - Hyunsoo Shawn Je
- Neuroscience and Behavioral Disorders ProgramDuke‐National University of Singapore (NUS) Medical SchoolSingapore CitySingapore,Advanced Bioimaging Center, AcademiaSingapore CitySingapore
| | - Jae‐Ick Kim
- Department of Biological Sciences, College of Information and BiotechnologyUlsan National Institute of Science and Technology (UNIST)UlsanKorea
| | - Hyung Joon Cho
- Department of Biomedical Engineering, College of Information and BiotechnologyUlsan National Institute of Science and Technology (UNIST)UlsanKorea
| | - Taejoon Kwon
- Department of Biomedical Engineering, College of Information and BiotechnologyUlsan National Institute of Science and Technology (UNIST)UlsanKorea,Center for Genome IntegrityInstitute for Basic Science (IBS)UlsanKorea
| |
Collapse
|
2
|
Berdowska I, Matusiewicz M, Krzystek-Korpacka M. HDL Accessory Proteins in Parkinson’s Disease—Focusing on Clusterin (Apolipoprotein J) in Regard to Its Involvement in Pathology and Diagnostics—A Review. Antioxidants (Basel) 2022; 11:antiox11030524. [PMID: 35326174 PMCID: PMC8944556 DOI: 10.3390/antiox11030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD)—a neurodegenerative disorder (NDD) characterized by progressive destruction of dopaminergic neurons within the substantia nigra of the brain—is associated with the formation of Lewy bodies containing mainly α-synuclein. HDL-related proteins such as paraoxonase 1 and apolipoproteins A1, E, D, and J are implicated in NDDs, including PD. Apolipoprotein J (ApoJ, clusterin) is a ubiquitous, multifunctional protein; besides its engagement in lipid transport, it modulates a variety of other processes such as immune system functionality and cellular death signaling. Furthermore, being an extracellular chaperone, ApoJ interacts with proteins associated with NDD pathogenesis (amyloid β, tau, and α-synuclein), thus modulating their properties. In this review, the association of clusterin with PD is delineated, with respect to its putative involvement in the pathological mechanism and its application in PD prognosis/diagnosis.
Collapse
Affiliation(s)
- Izabela Berdowska
- Correspondence: (I.B.); (M.M.); Tel.: +48-71-784-13-92 (I.B.); +48-71-784-13-70 (M.M.)
| | | | | |
Collapse
|
3
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
4
|
Clusterin overexpression protects against western diet-induced obesity and NAFLD. Sci Rep 2020; 10:17484. [PMID: 33060605 PMCID: PMC7562726 DOI: 10.1038/s41598-020-73927-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is a significant risk factor for various metabolic diseases and is closely related to non-alcoholic fatty liver disease (NAFLD) characterized by inflammation and oxidative stress. Clusterin is a multi-functional protein that is up-regulated in the pathogenesis of various metabolic diseases, including obesity and NAFLD. Our previous studies indicated that hepatocyte-specific overexpression of clusterin alleviates methionine choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) by activating nuclear factor erythroid 2-related factor 2 (Nrf2). Here we generated transgenic mice with whole-body clusterin overexpression (wCLU-tg) and investigated the role of clusterin in Western diet-induced obesity and NAFLD. We confirmed that obesity parameters and the spectrum of NAFLD of wCLU-tg mice were improved compared to wild type mice. Contrarily, clusterin deficiency deteriorated metabolic disruptions. We also found that clusterin activates target molecules for obesity and NAFLD, namely Nrf2 and AMPK, suggesting that clusterin protects against Western diet-induced obesity and NAFLD by activating Nrf2 and AMPK.
Collapse
|
5
|
Kant K, Tomar AK, Singh S, Yadav S. Ageing associated proteomic variations in seminal plasma of Indian men. JOURNAL OF PROTEINS AND PROTEOMICS 2019. [DOI: 10.1007/s42485-019-00013-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Moyse E, Arsenault M, Gaudreau P, Ferland G, Ramassamy C. Brain region-specific effects of long-term caloric restriction on redox balance of the aging rat. Mech Ageing Dev 2019; 179:51-59. [PMID: 30659860 DOI: 10.1016/j.mad.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/01/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) is the most effective intervention to improve health span and extend lifespan in preclinical models. This anti-aging effect of CR is related to attenuation of oxidative damage in various tissues, with divergent results in the brain. We addressed how brain oxidoreductive balance would be modulated in male Sprague-Dawley (SD) rats submitted to a 40% CR from 8 to 19 months of age, by reference to ad libitum-fed (AL) rats at 2 and 19 months of age. Four brain structures were compared: hippocampus, striatum, parietal cortex, cerebellum. Our CR diet elicits significant prevention of oxidative damages with the upregulation of antioxidant defenses (levels of glutathione [GSH], mRNAs of clusterin and of three key antioxidant enzymes) as compared to age-matched AL controls, in a strikingly region-specific pattern. CR also prevented a drastic rise of the glial fibrillary acidic protein in the hippocampus of old AL rats. Besides, the CR effects at age 19 months mainly consist in improving endogenous defenses before the onset of age-related redox alterations. These effects are more prominent in the hippocampus.
Collapse
Affiliation(s)
- Emmanuel Moyse
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal, 900 St-Denis Street, R Pavilion, Rm R05.436B-02, Montreal, QC, H2X0A9, Canada; Physiology of Reproduction and Behaviour Unit (PRC), University of Tours, INRA Centre of Tours, F-37380, Nouzilly, France
| | - Madeleine Arsenault
- Institut Armand-Frappier, INRS, 531 Bld des Prairies, Laval, QC, H7V 1B7, Canada
| | - Pierrette Gaudreau
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal, 900 St-Denis Street, R Pavilion, Rm R05.436B-02, Montreal, QC, H2X0A9, Canada; Department of Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Guylaine Ferland
- Institut de cardiologie de Montréal Research Center, Montreal, QC, H4J 1C5, Canada; Department of Nutrition, University of Montreal, Montreal, QC, H1T 1C8, Canada
| | - Charles Ramassamy
- Institut Armand-Frappier, INRS, 531 Bld des Prairies, Laval, QC, H7V 1B7, Canada; Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, G1V 4L3, Canada.
| |
Collapse
|
8
|
Abstract
Exfoliation syndrome (XFS) produces deleterious ocular aging and has protean systemic manifestations. Local ocular production of TGFβ1 is of central importance in XFS. TGFβ1 appears to induce the expression of LOXL1 and the production of other extracellular matrix components which are known to be present in exfoliation material. Furthermore, results from several studies find that the aqueous humor of exfoliation glaucoma patients exhibits a decreased antioxidant defense and increased oxidative stress systems. Finally, studies show that the levels of interleukin-6 and interleukin-8 in the aqueous humor of XFS patients were 3-fold higher than in controls. Overall TGFβ1, as well as a prooxidative and proinflammatory environment seems to play an important role in XFS.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
9
|
Clusterin inhibition mediates sensitivity to chemotherapy and radiotherapy in human cancer. Anticancer Drugs 2017; 28:702-716. [PMID: 28471806 DOI: 10.1097/cad.0000000000000507] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since its discovery in 1983, the protein clusterin (CLU) has been isolated from almost all human tissues and fluids and linked to the development of different physiopathological processes, including carcinogenesis and tumor progression. During the last few years, several studies have shown the cytoprotective role of secretory CLU in tumor cells, inhibiting their apoptosis and enhancing their resistance to conventional treatments including hormone depletion, chemotherapy, and radiotherapy. In an effort to determine the therapeutic potential that the inhibition of this protein could have on the development of new strategies for cancer treatment, numerous studies have been carried out in this field, with results, in most cases, satisfactory but sometimes contradictory. In this document, we summarize for the first time the current knowledge of the effects that CLU inhibition has on sensitizing tumor cells to conventional cancer treatments and discuss its importance in the development of new strategies against cancer.
Collapse
|
10
|
Menezes EB, de Oliveira RV, van Tilburg MF, Barbosa EA, Nascimento NV, Velho ALMCS, Moreno FB, Moreira RA, Monteiro-Moreira ACO, Carvalho GMC, Ramos AF, Memili E, Moura AA. Proteomic analysis of seminal plasma from locally-adapted "Curraleiro Pé-Duro bulls" (Bos taurus): identifying biomarkers involved in sperm physiology in endangered animals for conservation of biodiversity. Anim Reprod Sci 2017. [PMID: 28625714 DOI: 10.1016/j.anireprosci.2017.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study was aimed at evaluating the seminal plasma proteins and sperm parameters of Curraleiro Pé-Duro bulls. Semen was collected from 10 bulls by electroejaculation, and sperm parameters were evaluated in fresh and frozen-thawed semen. Seminal plasma proteins were analyzed by 2-D SDS-PAGE and mass spectrophotometry. Tools in computational biology were used to generate bioinformatic knowledge and evaluate gene ontology, protein-protein interactions, phylogenetic trees and multiple sequence alignments. Sperm motility in fresh and frozen-thawed semen was 78.8±1.8% and 21.2±1.6%, respectively. Pearson's correlations were evaluated (p<0.05). Sperm motility and vigor in fresh semen were correlated with clusterin, TIMP2 and cathepsin S (r=0.64-0.71) and sperm defects were related to inhibitor of carbonic anhydrase and BSP 5 (r=0.78-0.80). Clusterin, BSP 5, alpha-enolase, creatine kinase M-type, glyceraldehyde-3-phosphate dehydrogenase, BSP 3, albumin, and 5'-nucleotidase and legumain were correlated with acrosome intact live sperm (r=0.80-0.64). Associations were detected between sperm vigor and spermadhesin 1 (r=-0.89), and between sperm defects in fresh semen and spermadhesin 1 and clusterin (r=-0.81). Sperm motility in frozen-thawed semen was associated with BSP 1, spermadhesin 1, clusterin and spermadhesin Z13 (r=0.64-0.85). The percent of motile sperm after freeze-thawing was negatively correlated (r=-0.64) with the amount of spermadhesin 1 in the seminal plasma. Based on in silico analysis, TIMP2 interacted with BSP1, BSP3, BSP5 and metalloproteinases. Molecular functions of proteins associated with sperm parameters were binding, catalytic activity and enzymatic regulation. Amino acid sequences of spermadhesin 1 and BSP 1 from Bos taurus, and other domestic species were similar. Phylogenetic tree analysis demonstrated that clusterin from Bos taurus was related to Ovis aries and domains of clusterin, spermadhesin 1, BSP 1 and inhibitor of carbonic anhydrase were conserved as well. In summary, specific seminal proteins are associated with sperm parameters of locally-adapted bulls. Use of the endangered mammalian as a model may assist in understanding aspects of evolutionary adaptations and could improve assisted reproductive biotechnologies.
Collapse
Affiliation(s)
- E B Menezes
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA; Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, 60455760, Brazil
| | - R V de Oliveira
- Department of Animal Production - Animal Science Institute, Federal Rural University of Rio de Janeiro, Seropedica, Rio de Janeiro, 23890000, Brazil
| | - M F van Tilburg
- Department of Biology, State University of Ceara, Fortaleza, Ceara, 60714-903, Brazil
| | - E A Barbosa
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazilian Federal District, 70770901, Brazil
| | - N V Nascimento
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazilian Federal District, 70770901, Brazil
| | - A L M C S Velho
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, 60455760, Brazil
| | - F B Moreno
- School of Pharmacy, The University of Fortaleza, Fortaleza, Ceara, Brazil, 60811905
| | - R A Moreira
- School of Pharmacy, The University of Fortaleza, Fortaleza, Ceara, Brazil, 60811905
| | | | | | - A F Ramos
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazilian Federal District, 70770901, Brazil
| | - E Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - A A Moura
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, 60455760, Brazil.
| |
Collapse
|
11
|
Zalata A, El-Samanoudy AZ, Shaalan D, El-Baiomy Y, Mostafa T. In vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human sperm. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2015; 9:129-36. [PMID: 25918601 PMCID: PMC4410031 DOI: 10.22074/ijfs.2015.4217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/24/2013] [Indexed: 12/23/2022]
Abstract
Background Use of cellular phones emitting radiofrequency electromagnetic field
(RF-EMF) has been increased exponentially and become a part of everyday life. This
study aimed to investigate the effects of in vitro RF-EMF exposure emitted from cellular
phones on sperm motility index, sperm DNA fragmentation and seminal clusterin (CLU)
gene expression. Materials and Methods In this prospective study, a total of 124 semen samples were
grouped into the following main categories: i. normozoospermia (N, n=26), ii. asthenozoospermia (A, n=32), iii. asthenoteratozoospermia (AT, n=31) and iv. oligoasthenoteratozoospermia (OAT, n=35). The same semen samples were then divided into two portions non-exposed and exposed samples to cell phone radiation for 1 hour. Before and
immediately after exposure, both aliquots were subjected to different assessments for
sperm motility, acrosin activity, sperm DNA fragmentation and CLU gene expression.
Statistical differences were analyzed using paired t student test for comparisons between
two sub-groups where p<0.05 was set as significant. Results There was a significant decrease in sperm motility, sperm linear velocity,
sperm linearity index, and sperm acrosin activity, whereas there was a significant
increase in sperm DNA fragmentation percent, CLU gene expression and CLU protein levels in the exposed semen samples to RF-EMF compared with non-exposed
samples in OAT>AT>A>N groups, respectively (p<0.05). Conclusion Cell phone emissions have a negative impact on exposed sperm motility index, sperm acrosin activity, sperm DNA fragmentation and seminal CLU gene expression,
especially in OAT cases.
Collapse
Affiliation(s)
- Adel Zalata
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayman Z El-Samanoudy
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dalia Shaalan
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Youssef El-Baiomy
- Department of Dermatology and Andrology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Taymour Mostafa
- Department of Andrology and Sexology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Kwon HS, Kim TB, Lee YS, Jeong SH, Bae YJ, Moon KA, Bang BR, Moon HB, Cho YS. Clusterin expression level correlates with increased oxidative stress in asthmatics. Ann Allergy Asthma Immunol 2014; 112:217-21. [PMID: 24428970 DOI: 10.1016/j.anai.2013.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/30/2013] [Accepted: 12/08/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oxidative stress is thought to play a role in the pathogenesis of asthma. Clusterin is a sensitive cellular biosensor of oxidative stress and has antioxidant properties. The function and expression of clusterin in patients with asthma have not been fully investigated. OBJECTIVE To investigate whether the expression of clusterin in patients with asthma is regulated by increased oxidative burden and whether clusterin expression could be used to assess the response to inhaled corticosteroids. METHODS Clusterin levels in serum, induced sputum, and peripheral blood mononuclear cells of patients with asthma were measured by enzyme-linked immunosorbent assay and western blotting and compared with pulmonary function and levels of expression of hyperoxidized peroxiredoxins. Serum concentrations of clusterin in treatment-naive patients were compared before and after inhaled corticosteroid use. RESULTS Serum clusterin concentration was significantly elevated in patients with severe asthma and was inversely correlated with pulmonary function. The expression of hyperoxidized peroxiredoxins was greatly increased in peripheral blood mononuclear cells of patients with asthma and was strongly correlated with clusterin expression. Serum clusterin concentrations in treatment-naive patients with asthma were decreased significantly after initial treatment with inhaled corticosteroids. CONCLUSION Clusterin may be a biomarker of asthma severity and the burden of oxidative stress in patients with asthma. Moreover, clusterin may be useful for the prompt assessment of airway inflammation.
Collapse
Affiliation(s)
- Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoon Su Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Hwan Jeong
- Department of Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yun-Jeong Bae
- Asan Medical Center, Health Screening and Promotion Center, Seoul, Republic of Korea
| | - Keun-Ai Moon
- Asan Institute of Life Science, Seoul, Republic of Korea
| | - Bo-Ram Bang
- Asan Institute of Life Science, Seoul, Republic of Korea
| | - Hee-Bom Moon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Shin MS, Chang H, Namkoong C, Kang GM, Kim HK, Gil SY, Yu JH, Park KH, Kim MS. Hypothalamic and pituitary clusterin modulates neurohormonal responses to stress. Neuroendocrinology 2013; 98:233-41. [PMID: 24080898 DOI: 10.1159/000355625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022]
Abstract
Clusterin is a sulfated glycoprotein abundantly expressed in the pituitary gland and hypothalamus of mammals. However, its physiological role in neuroendocrine function is largely unknown. In the present study, we investigated the effects of intracerebroventricular (ICV) administration of clusterin on plasma pituitary hormone levels in normal rats. Single ICV injection of clusterin provoked neurohormonal changes seen under acute stress condition: increased plasma adrenocorticotropic hormone (ACTH), corticosterone, GH and prolactin levels and decreased LH and FSH levels. Consistently, hypothalamic and pituitary clusterin expression levels were upregulated following a restraint stress, suggesting an involvement of endogenous clusterin in stress-induced neurohormonal changes. In the pituitary intermediate lobe, clusterin was coexpressed with proopiomelanocortin (POMC), a precursor of ACTH. Treatment of clusterin in POMC expressing AtT-20 pituitary cells increased basal and corticotropin-releasing hormone (CRH)-stimulated POMC promoter activities and intracellular cAMP levels. Furthermore, clusterin treatment triggered ACTH secretion from AtT-20 cells in a CRH-dependent manner, indicating that increased clusterin under stressful conditions may augment CRH-stimulated ACTH production and release. In summary, hypothalamic and pituitary clusterin may function as a modulator of neurohormonal responses under stressful conditions.
Collapse
Affiliation(s)
- Mi-Seon Shin
- Division of Endocrinology and Metabolism, Asan Medical Center, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Seminal clusterin gene expression associated with seminal variables in fertile and infertile men. J Urol 2012; 188:1260-4. [PMID: 22902018 DOI: 10.1016/j.juro.2012.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Indexed: 02/05/2023]
Abstract
PURPOSE CLU is a disulfide linked, heterodimeric protein associated with the clearance of cellular debris and apoptosis. We assessed the association of seminal CLU gene expression with seminal variables in fertile and infertile men. MATERIALS AND METHODS A total of 124 men were divided into healthy, fertile men with normozoospermia, and men with asthenozoospermia, asthenoteratozoospermia and oligoasthenoteratozoospermia. History was obtained, and clinical examination and semen analysis were done. In semen we assessed sperm acrosin activity, sperm DNA fragmentation and seminal CLU gene expression. RESULTS CLU RNA and CLU protein gene expression were significantly increased in semen samples of infertile men with oligoasthenoteratozoospermia > asthenoteratozoospermia > asthenozoospermia compared with healthy, fertile controls. CLU gene expression significantly correlated negatively with sperm count, motility, acrosin activity index, linearity index and linear velocity, and significantly correlated positively with the percent of sperm abnormal forms and DNA fragmentation. CONCLUSION CLU gene expression was significantly increased in the semen samples of infertile men. It correlated negatively with sperm count, motility, acrosin activity, linearity index and linear velocity, and positively with the percent of sperm abnormal forms and DNA fragmentation.
Collapse
|
15
|
Roles of Extracellular Chaperones in Amyloidosis. J Mol Biol 2012; 421:499-516. [DOI: 10.1016/j.jmb.2012.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 01/24/2023]
|
16
|
Abstract
Clusterin, also known as apolipoprotein J, is a ubiquitous multifunctional glycoprotein. Following its identification in 1983, clusterin was found to be clearly increased in Alzheimer's disease (AD). Later research demonstrated that clusterin could bind amyloid-beta (Abeta) peptides and prevent fibril formation, a hallmark of AD pathology. In addition to preventing excessive inflammation, intracellular clusterin was found to reduce apoptosis and oxidative stress. Although early studies were inconclusive, two recent large-scale genome-wide association studies (GWAS) independently identified variants within the clusterin gene as risk factors for developing AD. This review focuses on the characteristics of clusterin and possible mechanisms of its relationship to AD.
Collapse
Affiliation(s)
- Zhong-Chen Wu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | | | | | | |
Collapse
|
17
|
Abstract
The maintenance of the levels and correct folding state of proteins (proteostasis) is a fundamental prerequisite for life. Life has evolved complex mechanisms to maintain proteostasis and many of these that operate inside cells are now well understood. The same cannot yet be said of corresponding processes in extracellular fluids of the human body, where inappropriate protein aggregation is known to underpin many serious diseases such as Alzheimer's disease, type II diabetes and prion diseases. Recent research has uncovered a growing family of abundant extracellular chaperones in body fluids which appear to selectively bind to exposed regions of hydrophobicity on misfolded proteins to inhibit their toxicity and prevent them from aggregating to form insoluble deposits. These extracellular chaperones are also implicated in clearing the soluble, stabilized misfolded proteins from body fluids via receptor-mediated endocytosis for subsequent lysosomal degradation. Recent work also raises the possibility that extracellular chaperones may play roles in modulating the immune response. Future work will better define the in vivo functions of extracellular chaperones in proteostasis and immunology and pave the way for the development of new treatments for serious diseases.
Collapse
|
18
|
Ekici S, Eroğlu A, Doğan Ekici AI, Türkeri L. Clusterin immunoreactivity as a predictive factor for progression of non-muscle-invasive bladder carcinoma. Urol Int 2010; 86:31-5. [PMID: 21088377 DOI: 10.1159/000321692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/01/2010] [Indexed: 12/17/2022]
Abstract
INTRODUCTION There is a need for prognostic markers which can predict the subset of patients who will not respond sufficiently to conservative management in non-muscle-invasive bladder carcinoma. We analyzed the association of clusterin (CLU) with clinicopathological factors. MATERIALS AND METHODS Immunohistochemical CLU expression was investigated in paraffin-embedded archival tissues of initial transurethral resection specimens of 46 patients with non-muscle-invasive bladder carcinoma. The result was expressed as the proportion of the number of CLU-containing tumor cells to the total number of tumor cells detected in each slide and 'percent CLU expression' was calculated for each patient. RESULTS Of the 46 cases (35 male, 11 female), 18 were ≥ 65 years of age. CLU expression was significantly higher in male and elderly patients. Following the initial transurethral resection, 39 patients showed tumor recurrence, and progression was seen in 25 patients, of whom 17 progressed to muscle invasion during follow-up. Although there was no significant correlation between CLU expression and recurrence, significant correlation with overall progression and progression to muscle-invasive disease was observed in this cohort of patients (p = 0.001 and p = 0.014, respectively). Among the patients with progression to muscle invasion, 13 underwent radical cystectomy with pT2 tumor in 5 patients in the final pathology of surgical specimens and pT3 and higher in the remainder. CONCLUSIONS CLU immunoreactivity showed correlation with age, gender and progression, mainly progression to muscle invasion. Thus, CLU can be used as a molecular marker to predict the potential of progression to muscle-invasive disease in a particular tumor which in turn may prove useful in the decision-making process for early cystectomy without losing time with conservative management.
Collapse
Affiliation(s)
- Sinan Ekici
- Department of Urology, Maltepe University School of Medicine, Istanbul, Turkey.
| | | | | | | |
Collapse
|
19
|
Dabbs RA, Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR. Extracellular Chaperones. Top Curr Chem (Cham) 2010. [PMID: 21516385 DOI: 10.1007/128_2010_85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The maintenance of the levels and correct folding state of proteins (proteostasis) is a fundamental prerequisite for life. Life has evolved complex mechanisms to maintain proteostasis and many of these that operate inside cells are now well understood. The same cannot yet be said of corresponding processes in extracellular fluids of the human body, where inappropriate protein aggregation is known to underpin many serious diseases such as Alzheimer's disease, type II diabetes and prion diseases. Recent research has uncovered a growing family of abundant extracellular chaperones in body fluids which appear to selectively bind to exposed regions of hydrophobicity on misfolded proteins to inhibit their toxicity and prevent them from aggregating to form insoluble deposits. These extracellular chaperones are also implicated in clearing the soluble, stabilized misfolded proteins from body fluids via receptor-mediated endocytosis for subsequent lysosomal degradation. Recent work also raises the possibility that extracellular chaperones may play roles in modulating the immune response. Future work will better define the in vivo functions of extracellular chaperones in proteostasis and immunology and pave the way for the development of new treatments for serious diseases.
Collapse
|
20
|
Zhou W, Guan Q, Kwan CCH, Chen H, Gleave ME, Nguan CYC, Du C. Loss of clusterin expression worsens renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2010; 298:F568-78. [DOI: 10.1152/ajprenal.00399.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prevention of ischemia-reperfusion injury (IRI) is a challenge in clinical care of the patients with kidney transplants or acute kidney injury, and understanding of the intrinsic mechanisms of resistance to injury in the kidney will lead to a novel therapy. Clusterin, a secreted glycoprotein, is an antiapoptotic protein in cancer cells. Our study is to investigate the role of clusterin in renal IRI. Renal IRI in mice was induced by clamping renal vein and artery for 45 or 50 min at 32°C. Apoptosis of renal tubular epithelial cells (TECs) was determined by FACS analysis. Clusterin expression was examined by Western blot or immunohistochemistry. Here, we showed that clusterin protein was induced in TECs following IRI, and more tubules expressed clusterin in the kidneys following ischemia at higher temperatures. In human proximal TEC HKC-8 cultures, clusterin was upregulated by removal of serum and growth factors in medium and was downregulated by TNF-α-IFN-γ mixture. The levels of clusterin were positively correlated with cell survival in these conditions. Knockdown or knockout of clusterin expression enhanced the sensitivity of TECs to apoptosis. In experimental models of renal IRI, deficiency in clusterin expression worsened the injury, as indicated by a significant increase in renal tissue damage with higher levels of serum creatinine and blood urea nitrogen and by a poorer recovery from the injury in clusterin-deficient mice compared with wild-type mice. Our data indicate that the reduction of inducible expression of clusterin results in an increase in TEC apoptosis in the cultures and renders mice susceptibility to IRI, implying a protective role of clusterin in kidney injury.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Urologic Sciences, University of British Columbia, Vancouver
- Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver
| | - Chris C. H. Kwan
- Department of Urologic Sciences, University of British Columbia, Vancouver
| | - Huifang Chen
- Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Martin E. Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver
| | - Christopher Y. C. Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia; and
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia; and
| |
Collapse
|
21
|
Chapter 9: Oxidative stress in malignant progression: The role of Clusterin, a sensitive cellular biosensor of free radicals. Adv Cancer Res 2010; 104:171-210. [PMID: 19878777 DOI: 10.1016/s0065-230x(09)04009-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clusterin/Apolipoprotein J (CLU) gene is expressed in most human tissues and encodes for two protein isoforms; a conventional heterodimeric secreted glycoprotein and a truncated nuclear form. CLU has been functionally implicated in several physiological processes as well as in many pathological conditions including ageing, diabetes, atherosclerosis, degenerative diseases, and tumorigenesis. A major link of all these, otherwise unrelated, diseases is that they are characterized by increased oxidative injury due to impaired balance between production and disposal of reactive oxygen or nitrogen species. Besides the aforementioned diseases, CLU gene is differentially regulated by a wide variety of stimuli which may also promote the production of reactive species including cytokines, interleukins, growth factors, heat shock, radiation, oxidants, and chemotherapeutic drugs. Although at low concentration reactive species may contribute to normal cell signaling and homeostasis, at increased amounts they promote genomic instability, chronic inflammation, lipid oxidation, and amorphous aggregation of target proteins predisposing thus cells for carcinogenesis or other age-related disorders. CLU seems to intervene to these processes due to its small heat-shock protein-like chaperone activity being demonstrated by its property to inhibit protein aggregation and precipitation, a main feature of oxidant injury. The combined presence of many potential regulatory elements in the CLU gene promoter, including a Heat-Shock Transcription Factor-1 and an Activator Protein-1 element, indicates that CLU gene is an extremely sensitive cellular biosensor of even minute alterations in the cellular oxidative load. This review focuses on CLU regulation by oxidative injury that is the common molecular link of most, if not all, pathological conditions where CLU has been functionally implicated.
Collapse
|
22
|
Wyatt A, Yerbury J, Poon S, Dabbs R, Wilson M. Chapter 6: The chaperone action of Clusterin and its putative role in quality control of extracellular protein folding. Adv Cancer Res 2010; 104:89-114. [PMID: 19878774 DOI: 10.1016/s0065-230x(09)04006-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The function(s) of clusterin may depend upon its topological location. A variety of intracellular "isoforms" of clusterin have been reported but further work is required to better define their identity. The secreted form of clusterin has a potent ability to inhibit both amorphous and amyloid protein aggregation. In the case of amorphous protein aggregation, clusterin forms stable, soluble high-molecular-weight complexes with misfolded client proteins. Clusterin expression is increased during many types of physiological and pathological stresses and is thought to function as an extracellular chaperone (EC). The pathology of a variety of serious human diseases is thought to arise as a consequence of the inappropriate aggregation of specific extracellular proteins (e.g., Abeta peptide in Alzheimer's disease and beta(2)-microglobulin in dialysis-related amyloidosis). We have proposed that together with other abundant ECs (e.g., haptoglobin and alpha(2)-macroglobulin), clusterin forms part of a previously unknown quality-control (QC) system for protein folding that mediates the recognition and disposal of extracellular misfolded proteins via receptor-mediated endocytosis and lysosomal degradation. Characterizing the mechanisms of this extracellular QC system will thus have major implications for our understanding of diseases of this type and may eventually lead to the development of new therapies.
Collapse
Affiliation(s)
- Amy Wyatt
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | |
Collapse
|
23
|
Ekici AID, Eren B, Türkmen N, Comunoğlu N, Fedakar R. Clusterin expression in non-neoplastic adenohypophyses and pituitary adenomas: cytoplasmic clusterin localization in adenohypophysis is related to aging. Endocr Pathol 2008; 19:47-53. [PMID: 18239862 DOI: 10.1007/s12022-008-9015-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clusterin is a circulating multifunctional glycoprotein produced in several kinds of epithelial and neuronal cells. Clusterin is upregulated during different physiological and pathological states, such as senescence, type-2 diabetes mellitus, Alzheimer disease, and in various neoplasms. Herein, we investigated the immunohistochemical expression of clusterin in non-neoplastic adenohypophysis of human autopsy subjects and pituitary adenomas. We also investigated the association of clusterin increase with age in adenohypophysis of autopsy subjects. Immunohistochemically, clusterin was found positive in the cytoplasm of all adenoma cases, and in the cytoplasm of parenchymal cells, stellate cells, mixed cell follicles and in colloidal material inside of the follicles of non-neoplastic adenohypophysis as well. Clusterin expression in pituitary adenomas was found significantly higher than in non-neoplastic adenohypophyses. In addition, in non-neoplastic adenohypophysis, a significant increase in clusterin expression levels between young (<or=30 years), middle aged (31 to 60 years), and older (>or=61 years) subjects (p < 0.00001, analysis of variance [ANOVA]) was found. In addition to clusterin accumulation, presence of calcification (p < 0.045, ANOVA) and presence of large follicles with colloid accumulation (p < 0.004, ANOVA) were also statistically significant factors related to aging in non-neoplastic adenohypophysis. In conclusion, the present study demonstrated that clusterin expression was found in non-neoplastic adenohypophysis and in upregulated amounts in pituitary adenomas. This study also demonstrated that in non-neoplastic adenohypophyses, increase of clusterin positive cells; histopathological findings of calcification or presence colloidal material accumulation in large follicles were associated with age. To our knowledge, immunohistochemical localization of clusterin in pituitary adenomas was not reported previously.
Collapse
Affiliation(s)
- A Işin Doğan Ekici
- Department of Pathology, Yeditepe University School of Medicine, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|