1
|
Korz V, Kremslehner C, Maliković J, Hussein A, Feyissa DD, Nagelreiter IM, Smidak R, Plasenzotti R, Gruber F, Lubec G. Striatal Transcriptome Reveals Differences Between Cognitively Impaired and Unimpaired Aged Male Rats. Front Aging Neurosci 2021; 12:611572. [PMID: 33488384 PMCID: PMC7820756 DOI: 10.3389/fnagi.2020.611572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
Cognitive processes require striatal activity. The underlying molecular mechanisms are widely unknown. For this reason the striatal transcriptome of young (YM), aged cognitively impaired (OMB), and unimpaired (OMG) male rats was analyzed. The global comparison of transcripts reveal a higher number of differences between OMG and YM as compared to OMB and YM. Hierarchical clustering detects differences in up- and down-regulated gene clusters in OMG and OMB when compared to YM. In OMG we found more single genes to be specifically regulated in this group than in OMB when compared to young. These genes were considered as cognition specific, whereas genes shared in OMG and OMB were considered as age specific. OMB specific up-regulated genes are related to negative control of cell differentiation and transcription (Hopx), to phagocytosis (Cd202) and cell adhesion (Pcdhb21), whereas down-regulated genes are related to associative learning, behavioral fear response and synaptic transmission (Gabra5). OMG specific up-regulated genes are in the context of maintenance of transcription and estrogen receptor signaling (Padi2, Anxa3), signal transduction [Rassf4, Dock8)], sterol regulation (Srebf1), and complement activity (C4a, C4b). Down-regulated genes are related to lipid oxidation reduction processes (Far2) and positive regulation of axon extension (Islr2). These relations were supported by pathway analysis, which reveals cholesterol metabolism processes in both aged group and cholesterol biosynthesis specifically in OMG; adipogenesis and focal adhesion in OMB. In OMG glucuronidation, estrogen metabolism, inflammatory responses and TGF beta signaling where detected as specific for this group. Signal transduction of the sphingosine-1-phospate-receptor (S1P) receptor was the main pathway difference in the comparison of OMB and OMG with downregulated genes in the first group. This difference could also be observed in the OMB vs. YM comparison but not in the OMG vs. YM analysis. Thus, an up-regulation of cognition related genes could be observed in OMG compared to OMB rats. The S1P pathway discriminated between OMB and OMG as well as between OMB and OMG. Since this pathway has been described as essential for cognitive processes in the striatum of mice, it may, among steroid hormone signaling, significantly contribute to the maintenance of cognitive processes in OMG.
Collapse
Affiliation(s)
- Volker Korz
- Proteomics Programme, Paracelsus Medical University, Salzburg, Austria
| | | | - Jovana Maliković
- Proteomics Programme, Paracelsus Medical University, Salzburg, Austria
| | - Ahmed Hussein
- Proteomics Programme, Paracelsus Medical University, Salzburg, Austria
| | | | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Roman Smidak
- Proteomics Programme, Paracelsus Medical University, Salzburg, Austria
| | | | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Proteomics Programme, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
2
|
Fuchs F, Herbeaux K, Aufrere N, Kelche C, Mathis C, Barbelivien A, Majchrzak M. Late enrichment maintains accurate recent and remote spatial memory only in aged rats that were unimpaired when middle aged. ACTA ACUST UNITED AC 2016; 23:303-12. [PMID: 27194797 PMCID: PMC4880144 DOI: 10.1101/lm.041236.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/26/2016] [Indexed: 11/29/2022]
Abstract
Exposure of rodents to a stimulating environment has beneficial effects on some cognitive functions that are impaired during physiological aging, and especially spatial reference memory. The present study investigated whether environmental enrichment rescues these functions in already declining subjects and/or protects them from subsequent decline. Subgroups of 17-mo-old female rats with unimpaired versus impaired performance in a spatial reference memory task (Morris water maze) were housed until the age of 24 mo in standard or enriched environment. They were then trained in a second reference memory task, conducted in a different room than the first, and recent (1 d) and remote (10 d) memory were assessed. In unimpaired subgroups, spatial memory declined from 17 to 24 mo in rats housed in standard conditions; an enriched environment during this period allowed maintenance of accurate recent and remote spatial memory. At 24 mo, rats impaired at the age of 17 mo housed in enriched environment learned the task and displayed substantial recent memory, but their performance remained lower than that of unimpaired rats, showing that enrichment failed to rescue spatial memory in already cognitively declining rats. Controls indicated carryover effects of the first water maze training, especially in aged rats housed in standard condition, and confirmed the beneficial effect of enrichment on remote memory of aged rats even if they performed poorly than young adults housed for the same duration in standard or enriched condition.
Collapse
Affiliation(s)
- Fanny Fuchs
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Unistra, Neuropôle de Strasbourg, Faculté de Psychologie, 67000 Strasbourg, France Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, GDR 2905, 67000 Strasbourg, France
| | - Karine Herbeaux
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Unistra, Neuropôle de Strasbourg, Faculté de Psychologie, 67000 Strasbourg, France Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, GDR 2905, 67000 Strasbourg, France
| | - Noémie Aufrere
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Unistra, Neuropôle de Strasbourg, Faculté de Psychologie, 67000 Strasbourg, France Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, GDR 2905, 67000 Strasbourg, France
| | - Christian Kelche
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Unistra, Neuropôle de Strasbourg, Faculté de Psychologie, 67000 Strasbourg, France Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, GDR 2905, 67000 Strasbourg, France
| | - Chantal Mathis
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Unistra, Neuropôle de Strasbourg, Faculté de Psychologie, 67000 Strasbourg, France Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, GDR 2905, 67000 Strasbourg, France
| | - Alexandra Barbelivien
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Unistra, Neuropôle de Strasbourg, Faculté de Psychologie, 67000 Strasbourg, France Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, GDR 2905, 67000 Strasbourg, France
| | - Monique Majchrzak
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Unistra, Neuropôle de Strasbourg, Faculté de Psychologie, 67000 Strasbourg, France Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, GDR 2905, 67000 Strasbourg, France
| |
Collapse
|
4
|
Kesby JP, Cui X, Burne THJ, Eyles DW. Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia. Front Cell Neurosci 2013; 7:111. [PMID: 23882183 PMCID: PMC3713405 DOI: 10.3389/fncel.2013.00111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/26/2013] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a heterogeneous group of disorders with unknown etiology. Although abnormalities in multiple neurotransmitter systems have been linked to schizophrenia, alterations in dopamine (DA) neurotransmission remain central to the treatment of this disorder. Given that schizophrenia is considered a neurodevelopmental disorder we have hypothesized that abnormal DA signaling in the adult patient may result from altered DA signaling during fetal brain development. Environmental and genetic risk factors can be modeled in rodents to allow for the investigation of early neurodevelopmental pathogenesis that may lead to clues into the etiology of schizophrenia. To address this we created an animal model of one such risk factor, developmental vitamin D (DVD) deficiency. DVD-deficient adult rats display an altered behavioral profile in response to DA releasing and blocking agents that are reminiscent of that seen in schizophrenia patients. Furthermore, developmental studies revealed that DVD deficiency also altered cell proliferation, apoptosis, and neurotransmission across the embryonic brain. In particular, DVD deficiency reduces the expression of crucial dopaminergic specification factors and alters DA metabolism in the developing brain. We speculate such alterations in fetal brain development may change the trajectory of DA neuron ontogeny to induce the behavioral abnormalities observed in adult offspring. The widespread evidence that both dopaminergic and structural changes are present in people who develop schizophrenia prior to onset also suggest that early alterations in development are central to the disease. Taken together, early alterations in DA ontogeny may represent a core feature in the pathology of schizophrenia. Such a mechanism could bring together evidence from multiple risk factors and genetic vulnerabilities to form a convergent pathway in disease pathophysiology.
Collapse
Affiliation(s)
- James P. Kesby
- Department of Psychiatry, School of Medicine, University of California San DiegoLa Jolla, CA, USA
| | - Xiaoying Cui
- Queensland Brain Institute, University of QueenslandBrisbane, QLD, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, University of QueenslandBrisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental HealthWacol, QLD, Australia
| | - Darryl W. Eyles
- Queensland Brain Institute, University of QueenslandBrisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental HealthWacol, QLD, Australia
| |
Collapse
|
5
|
Tavares L, Figueira I, McDougall GJ, Vieira HLA, Stewart D, Alves PM, Ferreira RB, Santos CN. Neuroprotective effects of digested polyphenols from wild blackberry species. Eur J Nutr 2013; 52:225-36. [PMID: 22314351 DOI: 10.1007/s00394-012-0307-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/18/2012] [Indexed: 01/06/2023]
Abstract
PURPOSE Blackberry ingestion has been demonstrated to attenuate brain degenerative processes with the benefits ascribed to the (poly)phenolic components. The aim of this work was to evaluate the neuroprotective potential of two wild blackberry species in a neurodegeneration cell model and compare them with a commercial variety. METHODS This work encompasses chemical characterization before and after an in vitro digestion and the assessment of neuroprotection by digested metabolites. Some studies targeting redox/cell death systems were also performed to assess possible neuroprotective molecular mechanisms. RESULTS The three blackberry extracts presented some quantitative differences in polyphenol composition that could be responsible for the different responses in the neurodegeneration cell model. Commercial blackberry extracts were ineffective but both wild blackberries, Rubus brigantinus and Rubus vagabundus, presented neuroprotective effects. It was verified that a diminishment of intracellular ROS levels, modulation of glutathione levels and activation of caspases occurred during treatment. The last effect suggests a preconditioning effect since caspase activation was not accompanied by diminution in cell death and loss of functionality. CONCLUSIONS This is the first time that metabolites obtained from an in vitro digested food matrix, and tested at levels approaching the concentrations found in human plasma, have been described as inducing an adaptative response.
Collapse
Affiliation(s)
- Lucélia Tavares
- Instituto de Tecnologia Química e Biológica, Universidade Novade Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kang S, Ling QL, Liu WT, Lu B, Liu Y, He L, Liu JG. Down-regulation of dorsal striatal RhoA activity and impairment of working memory in middle-aged rats. Neurobiol Learn Mem 2013; 103:3-10. [DOI: 10.1016/j.nlm.2013.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 01/04/2023]
|
7
|
Kiss Á, Delattre AM, Pereira SI, Carolino RG, Szawka RE, Anselmo-Franci JA, Zanata SM, Ferraz AC. 17β-Estradiol replacement in young, adult and middle-aged female ovariectomized rats promotes improvement of spatial reference memory and an antidepressant effect and alters monoamines and BDNF levels in memory- and depression-related brain areas. Behav Brain Res 2012; 227:100-8. [DOI: 10.1016/j.bbr.2011.10.047] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 12/20/2022]
|