1
|
Progressive impairments in executive function in the APP/PS1 model of Alzheimer's disease as measured by translatable touchscreen testing. Neurobiol Aging 2021; 108:58-71. [PMID: 34509856 DOI: 10.1016/j.neurobiolaging.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Executive function deficits in Alzheimer's disease (AD) occur early in disease progression and may be predictive of cognitive decline. However, no preclinical studies have identified deficits in rewarded executive function in the commonly used APPSwe/PS1∆E9 (APP/PS1) mouse model. To address this, we assessed 12-26 month old APP/PS1 mice on rewarded reversal and/or extinction tasks. 16-month-old, but not 13- or 26-month-old, APP/PS1 mice showed an attenuated rate of extinction. Reversal deficits were seen in 22-month-old, but not 13-month-old APP/PS1 animals. We then confirmed that impairments in reversal were unrelated to previously reported visual impairments in both AD mouse models and humans. Age, but not genotype, had a significant effect on markers of retinal health, indicating the deficits seen in APP/PS1 mice were directly related to cognition. This is the first characterisation of rewarded executive function in APP/PS1 mice, and has great potential to facilitate translation from preclinical models to the clinic.
Collapse
|
2
|
Laricchiuta D, Sciamanna G, Gimenez J, Termine A, Fabrizio C, Caioli S, Balsamo F, Panuccio A, De Bardi M, Saba L, Passarello N, Cutuli D, Mattioni A, Zona C, Orlando V, Petrosini L. Optogenetic Stimulation of Prelimbic Pyramidal Neurons Maintains Fear Memories and Modulates Amygdala Pyramidal Neuron Transcriptome. Int J Mol Sci 2021; 22:ijms22020810. [PMID: 33467450 PMCID: PMC7830910 DOI: 10.3390/ijms22020810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fear extinction requires coordinated neural activity within the amygdala and medial prefrontal cortex (mPFC). Any behavior has a transcriptomic signature that is modified by environmental experiences, and specific genes are involved in functional plasticity and synaptic wiring during fear extinction. Here, we investigated the effects of optogenetic manipulations of prelimbic (PrL) pyramidal neurons and amygdala gene expression to analyze the specific transcriptional pathways associated to adaptive and maladaptive fear extinction. To this aim, transgenic mice were (or not) fear-conditioned and during the extinction phase they received optogenetic (or sham) stimulations over photo-activable PrL pyramidal neurons. At the end of behavioral testing, electrophysiological (neural cellular excitability and Excitatory Post-Synaptic Currents) and morphological (spinogenesis) correlates were evaluated in the PrL pyramidal neurons. Furthermore, transcriptomic cell-specific RNA-analyses (differential gene expression profiling and functional enrichment analyses) were performed in amygdala pyramidal neurons. Our results show that the optogenetic activation of PrL pyramidal neurons in fear-conditioned mice induces fear extinction deficits, reflected in an increase of cellular excitability, excitatory neurotransmission, and spinogenesis of PrL pyramidal neurons, and associated to strong modifications of the transcriptome of amygdala pyramidal neurons. Understanding the electrophysiological, morphological, and transcriptomic architecture of fear extinction may facilitate the comprehension of fear-related disorders.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Correspondence:
| | - Giuseppe Sciamanna
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Juliette Gimenez
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Andrea Termine
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Carlo Fabrizio
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Francesca Balsamo
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Anna Panuccio
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Psychology, University “Sapienza” of Rome, 00185 Rome, Italy
| | - Marco De Bardi
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Luana Saba
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Noemi Passarello
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Debora Cutuli
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Psychology, University “Sapienza” of Rome, 00185 Rome, Italy
| | - Anna Mattioni
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Cristina Zona
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Valerio Orlando
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Laura Petrosini
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| |
Collapse
|
3
|
Nasrouei S, Rattel JA, Liedlgruber M, Marksteiner J, Wilhelm FH. Fear acquisition and extinction deficits in amnestic mild cognitive impairment and early Alzheimer's disease. Neurobiol Aging 2019; 87:26-34. [PMID: 31843256 DOI: 10.1016/j.neurobiolaging.2019.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022]
Abstract
Impaired learning and memory functioning are prime markers for Alzheimer's disease (AD). Although initial evidence points to impaired fear acquisition in later AD, no study has investigated fear conditioning in early stages and amnestic mild cognitive impairment (aMCI), a condition often preceding AD. The present study examined if fear conditioning gradually decays from healthy elderly to patients with aMCI, to patients with AD. Patients with AD (n = 43), patients with aMCI (n = 43), and matched healthy controls (n = 40) underwent a classical fear conditioning paradigm. During acquisition, a neutral face (conditioned stimulus, CS+) was paired with an electrical stimulus, whereas another face (unconditioned stimulus, CS-) was unpaired. Conditioned responses were measured by unconditioned stimulus expectancy, valence, and skin conductance. Compared to healthy controls, both patient groups showed less differential (CS+ vs. CS-) fear acquisition across all measures. Patients further displayed slowed extinction indexed by higher unconditioned stimulus expectancy and reduced positive valence for CS+, declining from aMCI to AD. Groups did not differ in responses during a preconditioning habituation phase and in unconditioned responding. Diminished differential fear acquisition and slowed extinction could represent prognostic markers for AD onset.
Collapse
Affiliation(s)
- Sarah Nasrouei
- Division of Clinical Psychology, Psychotherapy, and Health Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria; Department of Psychiatry and Psychotherapy A, State Hospital Hall, Hall, Austria.
| | - Julina A Rattel
- Division of Clinical Psychology, Psychotherapy, and Health Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Michael Liedlgruber
- Division of Clinical Psychology, Psychotherapy, and Health Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, State Hospital Hall, Hall, Austria
| | - Frank H Wilhelm
- Division of Clinical Psychology, Psychotherapy, and Health Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
4
|
Medawar E, Benway TA, Liu W, Hanan TA, Haslehurst P, James OT, Yap K, Muessig L, Moroni F, Nahaboo Solim MA, Baidildinova G, Wang R, Richardson JC, Cacucci F, Salih DA, Cummings DM, Edwards FA. Effects of rising amyloidβ levels on hippocampal synaptic transmission, microglial response and cognition in APP Swe/PSEN1 M146V transgenic mice. EBioMedicine 2019; 39:422-435. [PMID: 30555043 PMCID: PMC6354711 DOI: 10.1016/j.ebiom.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Progression of Alzheimer's disease is thought initially to depend on rising amyloidβ and its synaptic interactions. Transgenic mice (TASTPM; APPSwe/PSEN1M146V) show altered synaptic transmission, compatible with increased physiological function of amyloidβ, before plaques are detected. Recently, the importance of microglia has become apparent in the human disease. Similarly, TASTPM show a close association of plaque load with upregulated microglial genes. METHODS CA1 synaptic transmission and plasticity were investigated using in vitro electrophysiology. Microglial relationship to plaques was examined with immunohistochemistry. Behaviour was assessed with a forced-alternation T-maze, open field, light/dark box and elevated plus maze. FINDINGS The most striking finding is the increase in microglial numbers in TASTPM, which, like synaptic changes, begins before plaques are detected. Further increases and a reactive phenotype occur later, concurrent with development of larger plaques. Long-term potentiation is initially enhanced at pre-plaque stages but decrements with the initial appearance of plaques. Finally, despite altered plasticity, TASTPM have little cognitive deficit, even with a heavy plaque load, although they show altered non-cognitive behaviours. INTERPRETATION The pre-plaque synaptic changes and microglial proliferation are presumably related to low, non-toxic amyloidβ levels in the general neuropil and not directly associated with plaques. However, as plaques grow, microglia proliferate further, clustering around plaques and becoming phagocytic. Like in humans, even when plaque load is heavy, without development of neurofibrillary tangles and neurodegeneration, these alterations do not result in cognitive deficits. Behaviours are seen that could be consistent with pre-diagnosis changes in the human condition. FUNDING GlaxoSmithKline; BBSRC; UCL; ARUK; MRC.
Collapse
Affiliation(s)
- Evelyn Medawar
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK..
| | - Tiffanie A Benway
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK..
| | - Wenfei Liu
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK..
| | - Taylor A Hanan
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Peter Haslehurst
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK..
| | - Owain T James
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kenrick Yap
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Laurenz Muessig
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK..
| | - Fabia Moroni
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Muzammil A Nahaboo Solim
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.; Institute of Cellular Medicine, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK..
| | - Gaukhar Baidildinova
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.; Department of Science and Innovations, Asfendiyarov Kazakh National Medical University, Zhamakayev Street, Almaty, A26P6B5, Kazakhstan
| | - Rui Wang
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK..
| | - Jill C Richardson
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK..
| | - Francesca Cacucci
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK..
| | - Dervis A Salih
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK..
| | - Damian M Cummings
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK..
| | - Frances A Edwards
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK..
| |
Collapse
|
5
|
Shepherd A, Zhang TD, Zeleznikow-Johnston AM, Hannan AJ, Burrows EL. Transgenic Mouse Models as Tools for Understanding How Increased Cognitive and Physical Stimulation Can Improve Cognition in Alzheimer's Disease. Brain Plast 2018; 4:127-150. [PMID: 30564551 PMCID: PMC6296266 DOI: 10.3233/bpl-180076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cognitive decline appears as a core feature of dementia, of which the most prevalent form, Alzheimer's disease (AD) affects more than 45 million people worldwide. There is no cure, and therapeutic options remain limited. A number of modifiable lifestyle factors have been identified that contribute to cognitive decline in dementia. Sedentary lifestyle has emerged as a major modifier and accordingly, boosting mental and physical activity may represent a method to prevent decline in dementia. Beneficial effects of increased physical activity on cognition have been reported in healthy adults, showing potential to harness exercise and cognitive stimulation as a therapy in dementia. 'Brain training' (cognitive stimulation) has also been investigated as an intervention protecting against cognitive decline with normal aging. Consequently, the utility of exercise regimes and/or cognitive stimulation to improve cognition in dementia in clinical populations has been a major area of study. However, these therapies are in their infancy and efficacy is unclear. Investigations utilising animal models, where dose and timing of treatment can be tightly controlled, have provided many mechanistic insights. Genetically engineered mouse models are powerful tools to investigate mechanisms underlying cognitive decline, and also how environmental manipulations can alter both cognitive outcomes and pathology. A myriad of effects following physical activity and housing in enriched environments have been reported in transgenic mice expressing Alzheimer's disease-associated mutations. In this review, we comprehensively evaluate all studies applying environmental enrichment and/or increased physical exercise to transgenic mouse models of Alzheimer's disease. It is unclear whether interventions must be applied before first onset of cognitive deficits to be effective. In order to determine the importance of timing of interventions, we specifically scrutinised studies exposing transgenic mice to exercise and environmental enrichment before and after first report of cognitive impairment. We discuss the strengths and weaknesses of these preclinical studies and suggest approaches for enhancing rigor and using mechanistic insights to inform future therapeutic interventions.
Collapse
Affiliation(s)
- Amy Shepherd
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Tracy D Zhang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Dandi Ε, Kalamari A, Touloumi O, Lagoudaki R, Nousiopoulou E, Simeonidou C, Spandou E, Tata DA. Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. Int J Dev Neurosci 2018; 67:19-32. [PMID: 29545098 DOI: 10.1016/j.ijdevneu.2018.03.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/01/2023] Open
Abstract
Exposure to environmental enrichment can beneficially influence the behavior and enhance synaptic plasticity. The aim of the present study was to investigate the mediated effects of environmental enrichment on postnatal stress-associated impact with regard to behavior, stress reactivity as well as synaptic plasticity changes in the dorsal hippocampus. Wistar rat pups were submitted to a 3 h maternal separation (MS) protocol during postnatal days 1-21, while another group was left undisturbed. On postnatal day 23, a subgroup from each rearing condition (maternal separation, no-maternal separation) was housed in enriched environmental conditions until postnatal day 65 (6 weeks duration). At approximately three months of age, adult rats underwent behavioral testing to evaluate anxiety (Elevated Plus Maze), locomotion (Open Field Test), spatial learning and memory (Morris Water Maze) as well as non-spatial recognition memory (Novel Object Recognition Test). After completion of behavioral testing, blood samples were taken for evaluation of stress-induced plasma corticosterone using an enzyme-linked immunosorbent assay (ELISA), while immunofluorescence was applied to evaluate hippocampal BDNF and synaptophysin expression in dorsal hippocampus. We found that environmental enrichment protected against the effects of maternal separation as indicated by the lower anxiety levels and the reversal of spatial memory deficits compared to animals housed in standard conditions. These changes were associated with increased BDNF and synaptophysin expression in the hippocampus. Regarding the neuroendocrine response to stress, while exposure to an acute stressor potentiated corticosterone increases in maternally-separated rats, environmental enrichment of these rats prevented this effect. The current study aimed at investigating the compensatory role of enriched environment against the negative outcomes of adverse experiences early in life concurrently on emotional and cognitive behaviors, HPA function and neuroplasticity markers.
Collapse
Affiliation(s)
- Εvgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Aikaterini Kalamari
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Olga Touloumi
- Laboratory of Neuroimmunology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Rosa Lagoudaki
- Laboratory of Neuroimmunology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Evangelia Nousiopoulou
- Laboratory of Neuroimmunology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece.
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece.
| |
Collapse
|
7
|
Huang Y, Huang X, Zhang L, Han F, Pang KL, Li X, Shen JY. Magnesium boosts the memory restorative effect of environmental enrichment in Alzheimer's disease mice. CNS Neurosci Ther 2017; 24:70-79. [PMID: 29125684 DOI: 10.1111/cns.12775] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Environmental enrichment (EE) has been shown to enhance cognitive function in mouse models of Alzheimer's disease (AD). Magnesium-L-threonate (MgT) is a compound with a newly discovered effect to rescue learning and memory function in aging and AD mice. AIM To study the additive therapeutic effect of EE combined with MgT (EM) and the potential mechanism underlying the effects. MATERIALS AND METHODS APP/PS1 mice were treated with EE, MgT, or combination of EE and MgT (EM) and compared for restored memory function. RESULTS EM was more effective in improving cognition and spatial memory than either treatment alone in either long-term (12 months, started at 3 months old, which was before disease manifestation) or short-term (3 months, started at 6 months old, which was after disease manifestation) treatment. The behavioral improvement has coincided with rescue of synaptic contacts in the hippocampal region of the AD mouse brain. Immunoblots also showed that EM but neither single treatment rescued the activity reduction in CaMKII and CREB, two important downstream molecules in the N-methyl-D-aspartate receptor (NMDAR) pathway. CONCLUSION Environmental enrichment and MgT may synergistically improve recognition and spatial memory by reducing synaptic loss and restoring the NMDAR signaling pathway in AD mice, which suggests that combination of EE and MgT may be a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Ying Huang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xian Huang
- School of Medicine, Tsinghua University, Beijing, China
| | - Ling Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Fang Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ke-Liang Pang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xue Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Jian-Ying Shen
- School of Medicine, Tsinghua University, Beijing, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Young MJ, Geiszler PC, Pardon MC. A novel role for the immunophilin FKBP52 in motor coordination. Behav Brain Res 2016; 313:97-110. [PMID: 27418439 DOI: 10.1016/j.bbr.2016.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/09/2016] [Accepted: 07/10/2016] [Indexed: 02/01/2023]
Abstract
FKBP52 is a ubiquitously distributed immunophilin that has been associated with wide-ranging functions in cell signalling as well as hormonal and stress responses. Amongst other pathways, it acts via complex-formation with corticosteroid receptors and has consequently been associated with stress- and age- related neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Reduced levels of FKBP52 have been linked to tau dysfunction and amyloid beta toxicity in AD. However, FKBP52's role in cognition and neurodegenerative disorder-like phenotypes remain to be elucidated. The present study aimed therefore at investigating the cognitive and behavioural effects of reduced FKBP52 levels of genetically modified mice during ageing. Female and male FKBP52(+/+), FKBP52(+/-) and FKBP52(-/-) mice were compared at two-, ten-, twelve-, fifteen- and eighteen-months-of-age in a series of behavioural tests covering specie-specific behaviour, motor activity and coordination, fear-, spatial and recognition memory as well as curiosity and emotionality. Whilst cognitively unimpaired, FKBP52(+/-) mice performed worse on an accelerating rotating rod than FKBP52(+/+) littermates across all age-groups suggesting that FKBP52 is involved in processes controlling motor coordination. This deficit did not exacerbate with age but did worsen with repeated testing; pointing towards a role for FKBP52 in learning of tasks requiring motor coordination abilities. This study contributes to the knowledge base of FKBP52's implication in neurodegenerative diseases by demonstrating that FKBP52 by itself does not directly affect cognition and may therefore rather play an indirect, modulatory role in the functional pathology of AD, whereas it directly affects motor coordination, an early sign of neurodegenerative damages to the brain.
Collapse
Affiliation(s)
- Matthew J Young
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Philippine C Geiszler
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Marie-Christine Pardon
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom.
| |
Collapse
|
9
|
Geiszler PC, Barron MR, Pardon MC. Impaired burrowing is the most prominent behavioral deficit of aging htau mice. Neuroscience 2016; 329:98-111. [PMID: 27167086 PMCID: PMC4915442 DOI: 10.1016/j.neuroscience.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 01/22/2023]
Abstract
htau mice exhibit robust deficits in food burrowing. Behavioral differences between htau and mtau−/− are age-dependent. Before 6 months of age, the htau phenotype is stronger than the mtau−/− phenotype. With aging, the htau phenotype is milder than the mtau−/− phenotype.
htau mice are deficient of murine tau but express all six human tau isoforms, leading to gradual tau misprocessing and aggregation in brain areas relevant to Alzheimer’s disease. While histopathological changes in htau mice have been researched in the past, we focused here on functional consequences of human tau accumulation. htau mice and their background controls – murine tau knock-out (mtau−/−) and C57Bl/6J mice – underwent a comprehensive trial battery to investigate species-specific behavior, locomotor activity, emotional responses, exploratory traits, spatial and recognition memory as well as acquisition, retention and extinction of contextual fear at two, four, six, nine and twelve months of age. In htau mice, tau pathology was already present at two months of age, whereas deficits in food burrowing and spatial working memory were first noted at four months of age. At later stages the presence of human tau on a mtau−/− background appeared to guard cognitive performance; as mtau−/− but not htau mice differed from C57Bl/6J mice in the food burrowing, spontaneous alternation and object discrimination tasks. Aging mtau−/− mice also exhibited increased body mass and locomotor activity. These data highlight that reduced food-burrowing performance was the most robust aspect of the htau phenotype with aging. htau and mtau−/− deficits in food burrowing pointed at the necessity of intact tau systems for daily life activities. While some htau and mtau−/− deficits overlap, age differences between the two genotypes may reflect distinct functional effects and compared to C57Bl/6J mice, the htau phenotype appeared stronger than the mtau−/− phenotype at young ages but milder with aging.
Collapse
Affiliation(s)
- Philippine Camilla Geiszler
- Neuroscience Group, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | - Matthew Richard Barron
- Neuroscience Group, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | - Marie-Christine Pardon
- Neuroscience Group, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
10
|
Konstandi M, Shah YM, Matsubara T, Gonzalez FJ. Role of PPARα and HNF4α in stress-mediated alterations in lipid homeostasis. PLoS One 2013; 8:e70675. [PMID: 23967086 PMCID: PMC3743822 DOI: 10.1371/journal.pone.0070675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/20/2013] [Indexed: 12/13/2022] Open
Abstract
Stress is a risk factor for several cardiovascular pathologies. PPARα holds a fundamental role in control of lipid homeostasis by directly regulating genes involved in fatty acid transport and oxidation. Importantly, PPARα agonists are effective in raising HDL-cholesterol and lowering triglycerides, properties that reduce the risk for cardiovascular diseases. This study investigated the role of stress and adrenergic receptor (AR)-related pathways in PPARα and HNF4α regulation and signaling in mice following repeated restraint stress or treatment with AR-antagonists administered prior to stress to block AR-linked pathways. Repeated restraint stress up-regulated Pparα and its target genes in the liver, including Acox, Acot1, Acot4, Cyp4a10, Cyp4a14 and Lipin2, an effect that was highly correlated with Hnf4α. In vitro studies using primary hepatocyte cultures treated with epinephrine or AR-agonists confirmed that hepatic AR/cAMP/PKA/CREB- and JNK-linked pathways are involved in PPARα and HNF4α regulation. Notably, restraint stress, independent of PPARα, suppressed plasma triglyceride levels. This stress-induced effect could be attributed in part to hormone sensitive lipase activation in the white adipose tissue, which was not prevented by the increased levels of perilipin. Overall, this study identifies a mechanistic basis for the modification of lipid homeostasis following stress and potentially indicates novel roles for PPARα and HNF4α in stress-induced lipid metabolism.
Collapse
Affiliation(s)
- Maria Konstandi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | |
Collapse
|
11
|
Hu ZP, Browne ER, Liu T, Angel TE, Ho PC, Chan ECY. Metabonomic Profiling of TASTPM Transgenic Alzheimer’s Disease Mouse Model. J Proteome Res 2012; 11:5903-13. [DOI: 10.1021/pr300666p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ze-Ping Hu
- Department of Pharmacy, Faculty
of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99352, United States
| | - Edward R. Browne
- GlaxoSmithKline R&D China, Singapore Research Centre, Biopolis at One-North, 11 Biopolis Way, The Helios #03-01/02, Singapore 138667
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99352, United States
| | - Thomas E Angel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
99352, United States
| | - Paul C. Ho
- Department of Pharmacy, Faculty
of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty
of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| |
Collapse
|
12
|
Dong J, Zhou M, Wu X, Du M, Wang X. Memantine combined with environmental enrichment improves spatial memory and alleviates Alzheimer's disease-like pathology in senescence-accelerated prone-8 (SAMP8) mice. J Biomed Res 2012; 26:439-47. [PMID: 23554783 PMCID: PMC3597048 DOI: 10.7555/jbr.26.20120053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/25/2012] [Accepted: 07/29/2012] [Indexed: 12/14/2022] Open
Abstract
Memantine is a N-methyl-D-aspartate (NMDA) receptor antagonist approved for the treatment of moderate to severe Alzheimer's disease (AD). Environmental enrichment (EE) has shown significant beneficial effects on functional improvement in AD. In this study, we sought to determine whether combining these two distinct therapies would yield greater benefit than either drug used alone. We investigated the effect of memantine combined with EE on spatial learning and memory and AD-like pathology in a widely used AD model, the senescence-accelerated prone mice (SAMP8). The SAMP8 mice were randomly assigned to enriched housing (EH) or standard housing (SH), where either memantine (20 mg/kg) or saline was given by gastric lavage once daily continuously for eight weeks. Our results showed that, when provided separately, memantine and EE significantly improved spatial learning and memory by shortening escape latencies and increasing the frequency of entrance into the target quadrant. When combined, memantine and EE showed additive effect on learning and memory as evidenced by significant shorter escape latencies and higher frequency of target entrance than either drug alone. Consistent with the behavior results, pathological studies showed that both memantine and EE significantly reduced hippocampal CA1 neurofibrilliary tangles (NFTs) as well as amyloid beta precursor protein (APP) levels. Combining both therapies synergistically lessened NFTs and APP expression compared to either drug alone in SAMP8 mice, indicating that the combination of memantine with EE could offer a novel and efficient therapeutic strategy for the treatment of AD.
Collapse
|
13
|
Lalonde R, Fukuchi K, Strazielle C. APP transgenic mice for modelling behavioural and psychological symptoms of dementia (BPSD). Neurosci Biobehav Rev 2012; 36:1357-75. [PMID: 22373961 PMCID: PMC3340431 DOI: 10.1016/j.neubiorev.2012.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 12/17/2022]
Abstract
The discovery of gene mutations responsible for autosomal dominant Alzheimer's disease has enabled researchers to reproduce in transgenic mice several hallmarks of this disorder, notably Aβ accumulation, though in most cases without neurofibrillary tangles. Mice expressing mutated and wild-type APP as well as C-terminal fragments of APP exhibit variations in exploratory activity reminiscent of behavioural and psychological symptoms of Alzheimer dementia (BPSD). In particular, open-field, spontaneous alternation, and elevated plus-maze tasks as well as aggression are modified in several APP transgenic mice relative to non-transgenic controls. However, depending on the precise murine models, changes in open-field and elevated plus-maze exploration occur in either direction, either increased or decreased relative to controls. It remains to be determined which neurotransmitter changes are responsible for this variability, in particular with respect to GABA, 5HT, and dopamine.
Collapse
Affiliation(s)
- R Lalonde
- Département de Psychologie, Faculté des Sciences, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France.
| | | | | |
Collapse
|
14
|
Spines, plasticity, and cognition in Alzheimer's model mice. Neural Plast 2011; 2012:319836. [PMID: 22203915 PMCID: PMC3238410 DOI: 10.1155/2012/319836] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/27/2011] [Indexed: 01/03/2023] Open
Abstract
The pathological hallmarks of Alzheimer's disease (AD)--widespread synaptic and neuronal loss and the pathological accumulation of amyloid-beta peptide (Aβ) in senile plaques, as well as hyperphosphorylated tau in neurofibrillary tangles--have been known for many decades, but the links between AD pathology and dementia and effective therapeutic strategies remain elusive. Transgenic mice have been developed based on rare familial forms of AD and frontotemporal dementia, allowing investigators to test in detail the structural, functional, and behavioral consequences of AD-associated pathology. Here, we review work on transgenic AD models that investigate the degeneration of dendritic spine structure, synaptic function, and cognition. Together, these data support a model of AD pathogenesis in which soluble Aβ initiates synaptic dysfunction and loss, as well as pathological changes in tau, which contribute to both synaptic and neuronal loss. These changes in synapse structure and function as well as frank synapse and neuronal loss contribute to the neural system dysfunction which causes cognitive deficits. Understanding the underpinnings of dementia in AD will be essential to develop and evaluate therapeutic approaches for this widespread and devastating disease.
Collapse
|
15
|
Kumar A, Rani A, Tchigranova O, Lee WH, Foster TC. Influence of late-life exposure to environmental enrichment or exercise on hippocampal function and CA1 senescent physiology. Neurobiol Aging 2011; 33:828.e1-17. [PMID: 21820213 DOI: 10.1016/j.neurobiolaging.2011.06.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/13/2011] [Accepted: 06/23/2011] [Indexed: 01/11/2023]
Abstract
Aged (20-22 months) male Fischer 344 rats were randomly assigned to sedentary (A-SED), environmentally-enriched (A-ENR), or exercise (A-EX) conditions. After 10-12 weeks of differential experience, the 3 groups of aged rats and young sedentary controls were tested for physical and cognitive function. Spatial discrimination learning and memory consolidation, tested on the water maze, were enhanced in environmentally-enriched compared with sedentary. A-EX exhibited improved and impaired performance on the cue and spatial task, respectively. Impaired spatial learning in A-EX was likely due to a bias in response selection associated with exercise training, as object recognition memory improved for A-EX rats. An examination of senescent hippocampal physiology revealed that enrichment and exercise reversed age-related changes in long-term depression (LTD) and long-term potentiation (LTP). Rats in the enrichment group exhibited an increase in cell excitability compared with the other 2 groups of aged animals. The results indicate that differential experience biased the selection of a spatial or a response strategy and factors common across the 2 conditions, such as increased hippocampal activity associated with locomotion, contribute to reversal of senescent synaptic plasticity.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA
| | | | | | | | | |
Collapse
|
16
|
Moderate Environmental Enrichment Mitigates Tauopathy in a Neurofibrillary Tangle Mouse Model. J Neuropathol Exp Neurol 2011; 70:610-21. [DOI: 10.1097/nen.0b013e318221bfab] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Herring A, Lewejohann L, Panzer AL, Donath A, Kröll O, Sachser N, Paulus W, Keyvani K. Preventive and therapeutic types of environmental enrichment counteract beta amyloid pathology by different molecular mechanisms. Neurobiol Dis 2011; 42:530-8. [DOI: 10.1016/j.nbd.2011.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/28/2011] [Accepted: 03/06/2011] [Indexed: 11/16/2022] Open
|
18
|
Bonardi C, de Pulford F, Jennings D, Pardon MC. A detailed analysis of the early context extinction deficits seen in APPswe/PS1dE9 female mice and their relevance to preclinical Alzheimer's disease. Behav Brain Res 2011; 222:89-97. [PMID: 21440575 DOI: 10.1016/j.bbr.2011.03.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an incurable age-related neurodegenerative condition, characterised by progressive decline in cognitive and physical functions, and extensive brain damage. Identifying cognitive deficits that accompany early AD is critical, as the accompanying synaptic changes can be effectively targeted by current treatments - at present AD is typically not diagnosed until brain pathology is established, and treatment relatively ineffective. We therefore examined early cognitive changes in 4-month-old mice over-expressing 2 genes responsible for AD (APPswe/PS1d9 mouse line). Experiment 1 tested 4-month-old female APPswe/PS1dE9 mice and their wild-type littermates on 4 validated tasks involving 8 cognitive and non cognitive measures. We observed a selective deficit in extinction of contextual fear in APPswe/PS1dE9 mice. To extend the generality of this finding, Experiment 2 examined conditioning and extinction of an auditory stimulus paired with a sucrose reinforcer. No effect of genotype was observed. A third experiment investigated whether the context extinction impairment could be attributed to an attentional deficit. One conditioning stimulus (CS) was preexposed without consequence, and then it and a second, novel auditory CS were paired with food. Preexposure produced equal retardation of conditioning of the preexposed CS in both genotypes. However, in Experiment 2, and marginally in Experiment 3, additional tests revealed evidence of a selective impairment in context extinction in transgenic mice. These data suggest that context extinction deficits precede other cognitive impairments in APPswe/PS1dE9 mice, an effect that has intriguing parallels with findings in patients with mild AD.
Collapse
Affiliation(s)
- Charlotte Bonardi
- School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Mechanisms mediating brain and cognitive reserve: experience-dependent neuroprotection and functional compensation in animal models of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:331-9. [PMID: 21112312 DOI: 10.1016/j.pnpbp.2010.10.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/13/2010] [Accepted: 10/29/2010] [Indexed: 01/01/2023]
Abstract
'Brain and cognitive reserve' (BCR) refers here to the accumulated neuroprotective reserve and capacity for functional compensation induced by the chronic enhancement of mental and physical activity. BCR is thought to protect against, and compensate for, a range of different neurodegenerative diseases, as well as other neurological and psychiatric disorders. In this review we will discuss BCR, and its potential mechanisms, in neurodegenerative disorders, with a focus on Huntington's disease (HD) and Alzheimer's disease (AD). Epidemiological studies of AD, and other forms of dementia, provided early evidence for BCR. The first evidence for the beneficial effects of enhanced mental and physical activity, and associated mechanistic insights, in an animal model of neurodegenerative disease was provided by experiments using HD transgenic mice. More recently, experiments on animal models of HD, AD and various other brain disorders have suggested potential molecular and cellular mechanisms underpinning BCR. We propose that sophisticated insight into the processes underlying BCR, and identification of key molecules mediating these beneficial effects, will pave the way for therapeutic advances targeting these currently incurable neurodegenerative diseases.
Collapse
|
20
|
Scullion G, Kendall D, Marsden C, Sunter D, Pardon MC. Chronic treatment with the α2-adrenoceptor antagonist fluparoxan prevents age-related deficits in spatial working memory in APP×PS1 transgenic mice without altering β-amyloid plaque load or astrocytosis. Neuropharmacology 2011; 60:223-34. [DOI: 10.1016/j.neuropharm.2010.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/16/2010] [Accepted: 09/03/2010] [Indexed: 12/12/2022]
|
21
|
Therapeutic potential of some stress mediators in early Alzheimer's disease. Exp Gerontol 2011; 46:170-3. [DOI: 10.1016/j.exger.2010.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 01/19/2023]
|
22
|
Chouliaras L, Sierksma ASR, Kenis G, Prickaerts J, Lemmens MAM, Brasnjevic I, van Donkelaar EL, Martinez-Martinez P, Losen M, De Baets MH, Kholod N, van Leeuwen F, Hof PR, van Os J, Steinbusch HWM, van den Hove DLA, Rutten BPF. Gene-environment interaction research and transgenic mouse models of Alzheimer's disease. Int J Alzheimers Dis 2010; 2010. [PMID: 20953364 PMCID: PMC2952897 DOI: 10.4061/2010/859101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 07/31/2010] [Indexed: 01/08/2023] Open
Abstract
The etiology of the sporadic form of Alzheimer's disease (AD) remains largely unknown. Recent evidence has suggested that gene-environment interactions (GxE) may play a crucial role in its development and progression. Whereas various susceptibility loci have been identified, like the apolipoprotein E4 allele, these cannot fully explain the increasing prevalence of AD observed with aging. In addition to such genetic risk factors, various environmental factors have been proposed to alter the risk of developing AD as well as to affect the rate of cognitive decline in AD patients. Nevertheless, aside from the independent effects of genetic and environmental risk factors, their synergistic participation in increasing the risk of developing AD has been sparsely investigated, even though evidence points towards such a direction. Advances in the genetic manipulation of mice, modeling various aspects of the AD pathology, have provided an excellent tool to dissect the effects of genes, environment, and their interactions. In this paper we present several environmental factors implicated in the etiology of AD that have been tested in transgenic animal models of the disease. The focus lies on the concept of GxE and its importance in a multifactorial disease like AD. Additionally, possible mediating mechanisms and future challenges are discussed.
Collapse
Affiliation(s)
- L Chouliaras
- School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ruiz-Valdepeñas L, Benito C, Tolón RM, Martínez Orgado JA, Romero J. The endocannabinoid system and amyloid-related diseases. Exp Neurol 2010; 224:66-73. [PMID: 20353781 DOI: 10.1016/j.expneurol.2010.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 12/17/2022]
Abstract
The endocannabinoid system may be the target of novel therapies in a wide variety of diseases. Among them, those related with amyloid accumulation will be discussed in the present review. Several components of this system (CB1 and CB2 receptors, endocannabinoids, FAAH enzyme) may participate in different aspects of amyloid pathophysiology such as, for instance, synaptic activity, cell migration, cytokine production or phagocytic activity. Consistent with recent data, putative lines of research and hypothesis will be discussed.
Collapse
Affiliation(s)
- Lourdes Ruiz-Valdepeñas
- Laboratorio de Apoyo a la Investigación and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Universitario Fundación Alcorcón, 28922, Alcorcón, Spain
| | | | | | | | | |
Collapse
|
24
|
Abstract
There is now a large volume of data indicating that compounds activating cannabinoid CB(1) receptors, either directly or indirectly by preventing the breakdown of endogenous cannabinoids, can protect against neuronal damage produced by a variety of neuronal "insults". Given that such neurodegenerative stimuli result in increased endocannabinoid levels and that animals with genetic deletions of CB(1) receptors are more susceptible to the deleterious effects of such stimuli, a case can be made for an endogenous neuroprotective role of endocannabinoids. However, this is an oversimplification of the current literature, since (a) compounds released together with the endocannabinoids can contribute to the neuroprotective effect; (b) other proteins, such as TASK-1 and PPARalpha, are involved; (c) the CB(1) receptor antagonist/inverse agonist rimonabant has also been reported to have neuroprotective properties in a number of animal models of neurodegenerative disorders. Furthermore, the CB(2) receptor located on peripheral immune cells and activated microglia are potential targets for novel therapies. In terms of the clinical usefulness of targeting the endocannabinoid system for the treatment of neurodegenerative disorders, data are emerging, but important factors to be considered are windows of opportunity (for acute situations such as trauma and ischemia) and the functionality of the target receptors (for chronic neurodegenerative disorders such as Alzheimer's disease).
Collapse
|
25
|
Abstract
The aging of the population brings new health challenges, and in particular, the need to implement suitable pro-healthy aging interventions. This paper discusses the potential of mild stressors inducing hormesis as a lifespan and healthspan extension strategy and how it can be applied to the human. There is some evidence that the anti-aging benefits of lifestyle factors, such as diet, exercise or engaging in activities may be achieved via hormetic regulation. This supports the validity of the concept in human. There are, however, gaps in knowledge and ethical barriers that need to be addressed to establish the suitability of the approach to the clinical context or the general geriatric population. In particular, we need to find out which stressors are safe for use as anti-aging interventions, when they have to be applied to achieve maximal benefits, how their therapeutic potential is altered by changes in the stress system induced by age and pathological conditions, and the extent to which the occurrence of adverse versus positive effects depends on interacting genetic and experiential factors.
Collapse
Affiliation(s)
- Marie-Christine Pardon
- University of Nottingham Medical School, School of Biomedical Sciences, Queen's Medical Centre, Nottingham, United Kingdom.
| |
Collapse
|