1
|
Her Y, Pascual DM, Goldstone-Joubert Z, Marcogliese PC. Variant functional assessment in Drosophila by overexpression: what can we learn? Genome 2024; 67:158-167. [PMID: 38412472 DOI: 10.1139/gen-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, "humanization", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in Drosophila. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in Drosophila to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.
Collapse
Affiliation(s)
- Yina Her
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Danielle M Pascual
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Zoe Goldstone-Joubert
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Paul C Marcogliese
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
- Excellence in Neurodevelopment and Rehabilitation Research in Child Health (ENRRICH) Theme, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Chang HY, Wang IF. Restoring functional TDP-43 oligomers in ALS and laminopathic cellular models through baicalein-induced reconfiguration of TDP-43 aggregates. Sci Rep 2024; 14:4620. [PMID: 38409193 PMCID: PMC10897466 DOI: 10.1038/s41598-024-55229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
A group of misfolded prone-to-aggregate domains in disease-causing proteins has recently been shown to adopt unique conformations that play a role in fundamental biological processes. These processes include the formation of membrane-less sub-organelles, alternative splicing, and gene activation and silencing. The cellular responses are regulated by the conformational switching of prone-to-aggregate domains, independently of changes in RNA or protein expression levels. Given this, targeting the misfolded states of disease-causing proteins to redirect them towards their physiological conformations is emerging as an effective therapeutic strategy for diseases caused by protein misfolding. In our study, we successfully identified baicalein as a potent structure-correcting agent. Our findings demonstrate that baicalein can reconfigure existing TDP-43 aggregates into an oligomeric state both in vitro and in disease cells. This transformation effectively restores the bioactivity of misfolded TDP-43 proteins in cellular models of ALS and premature aging in progeria. Impressively, in progeria cells where defective lamin A interferes with TDP-43-mediated exon skipping, the formation of pathological TDP-43 aggregates is promoted. Baicalein, however, restores the functionality of TDP-43 and mitigates nuclear shape defects in these laminopathic cells. This establishes a connection between lamin A and TDP-43 in the context of aging. Our findings suggest that targeting physiological TDP-43 oligomers could offer a promising therapeutic avenue for treating aging-associated disorders.
Collapse
Affiliation(s)
- Hsiang-Yu Chang
- Garage Brain Science, B201, Central Taiwan Innovation Campus, Ministry of Economic Affairs, Nantou City, 540219, Taiwan
- Yee Fan Med Inc, Temple City, CA, 91780, USA
- SABNP Lab, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - I-Fan Wang
- Garage Brain Science, B201, Central Taiwan Innovation Campus, Ministry of Economic Affairs, Nantou City, 540219, Taiwan.
- Yee Fan Med Inc, Temple City, CA, 91780, USA.
| |
Collapse
|
3
|
Ni J, Ren Y, Su T, Zhou J, Fu C, Lu Y, Li D, Zhao J, Li Y, Zhang Y, Fang Y, Liu N, Geng Y, Chen Y. Loss of TDP-43 function underlies hippocampal and cortical synaptic deficits in TDP-43 proteinopathies. Mol Psychiatry 2023; 28:931-945. [PMID: 34697451 DOI: 10.1038/s41380-021-01346-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
TDP-43 proteinopathy is linked to neurodegenerative diseases that feature synaptic loss in the cortex and hippocampus, although it remains unclear how TDP-43 regulates mature synapses. We report that, in adult mouse hippocampus, TDP-43 knockdown, but not overexpression, induces robust structural and functional damage to excitatory synapses, supporting a role for TDP-43 in maintaining mature synapses. Dendritic spine loss induced by TDP-43 knockdown is rescued by wild-type TDP-43, but not ALS/FTLD-associated mutants, suggesting a common TDP-43 functional deficiency in neurodegenerative diseases. Interestingly, M337V and A90V mutants also display dominant negative activities against WT TDP-43, partially explaining why M337V transgenic mice develop hippocampal degeneration similar to that in excitatory neuronal TDP-43 knockout mice, and why A90V mutation is associated with Alzheimer's disease. Further analyses reveal that a TDP-43 knockdown-induced reduction in GluN2A contributes to synaptic loss. Our results show that loss of TDP-43 function underlies hippocampal and cortical synaptic degeneration in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Jiangxia Ni
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongfei Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tonghui Su
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chaoying Fu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yi Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - De'an Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yunxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China.
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China.
| |
Collapse
|
4
|
Liao YZ, Ma J, Dou JZ. The Role of TDP-43 in Neurodegenerative Disease. Mol Neurobiol 2022; 59:4223-4241. [DOI: 10.1007/s12035-022-02847-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/23/2022] [Indexed: 12/14/2022]
|
5
|
Yilmaz R, Weishaupt K, Valkadinov I, Knehr A, Brenner D, Weishaupt JH. Quadruple genetic variants in a sporadic ALS patient. Mol Genet Genomic Med 2022; 10:e1953. [PMID: 35426263 PMCID: PMC9266611 DOI: 10.1002/mgg3.1953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Due to upcoming gene‐specific therapy approaches for ALS patients, understanding familial and sporadic ALS genetics is becoming increasingly important. In this study, we wanted to investigate underlying genetic causes for an SALS patient. Methods We performed ALS gene panel sequencing and subsequent segregation analysis in the family. Results Genetic studies suggest that a proportion of SALS cases has an oligogenic origin due to the combination of low‐effect size mutations in several ALS genes. Maximally three mutations in different ALS disease genes have been described in isolated ALS patients. Here, we report for the first time the co‐occurrence of rare nonsynonymous variants in four known ALS genes in a SALS patient (c.859G > A/p.Gly287Ser in TARDBP, c.304G > T/p.Glu102* in NEK1, c.3446C > A/p.Gly1149Val in ERBB4, and c.1015C > T/p.Arg339Trp in VEGFA). All four variants were unique for the patient, whereas up to three of these variants were detected in the unaffected family members, all older than the patient. Discussion Our study suggests that SALS can be caused by the additive or synergistic action of low‐effect size mutations. Broader use of gene panel analysis or whole exome/genome sequencing may reveal a potentially treatable oligogenic causation in a higher percentage of SALS than previously thought.
Collapse
Affiliation(s)
- Rüstem Yilmaz
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Kanchi Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Ivan Valkadinov
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Antje Knehr
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - David Brenner
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Jochen H Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
7
|
Meneses A, Koga S, O’Leary J, Dickson DW, Bu G, Zhao N. TDP-43 Pathology in Alzheimer’s Disease. Mol Neurodegener 2021; 16:84. [PMID: 34930382 PMCID: PMC8691026 DOI: 10.1186/s13024-021-00503-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/21/2021] [Indexed: 12/05/2022] Open
Abstract
Transactive response DNA binding protein of 43 kDa (TDP-43) is an intranuclear protein encoded by the TARDBP gene that is involved in RNA splicing, trafficking, stabilization, and thus, the regulation of gene expression. Cytoplasmic inclusion bodies containing phosphorylated and truncated forms of TDP-43 are hallmarks of amyotrophic lateral sclerosis (ALS) and a subset of frontotemporal lobar degeneration (FTLD). Additionally, TDP-43 inclusions have been found in up to 57% of Alzheimer’s disease (AD) cases, most often in a limbic distribution, with or without hippocampal sclerosis. In some cases, TDP-43 deposits are also found in neurons with neurofibrillary tangles. AD patients with TDP-43 pathology have increased severity of cognitive impairment compared to those without TDP-43 pathology. Furthermore, the most common genetic risk factor for AD, apolipoprotein E4 (APOE4), is associated with increased frequency of TDP-43 pathology. These findings provide strong evidence that TDP-43 pathology is an integral part of multiple neurodegenerative conditions, including AD. Here, we review the biology and pathobiology of TDP-43 with a focus on its role in AD. We emphasize the need for studies on the mechanisms that lead to TDP-43 pathology, especially in the setting of age-related disorders such as AD.
Collapse
|
8
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
9
|
Jamerlan A, An SSA. The influence of Aβ-dependent and independent pathways on TDP-43 proteinopathy in Alzheimer's disease: a possible connection to LATE-NC. Neurobiol Aging 2020; 95:161-167. [PMID: 32814257 DOI: 10.1016/j.neurobiolaging.2020.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that results from the accumulation of plaques by cleaved Aβ42 peptides as well as neurofibrillary tangles of tau proteins. This accumulation triggers a complex cascade of cytotoxic, neuroinflammatory, and oxidative stresses that lead to neuronal death throughout the progression of the disease. Much of research in AD focused on the 2 pathologic proteins. Interestingly, another form of dementia with similar clinical manifestations of AD, but preferentially affected much older individuals, was termed as limbic-predominant age-related transactive response DNA-binding protein 43 (TDP-43) encephalopathy (LATE) and involved the cytotoxic intraneuronal deposition of phosphorylated TDP-43. TDP-43 proteinopathy was also found to be involved in AD pathology leading to the possibility that AD and LATE may share a common upstream etiology. This paper discusses the roles molecular pathways known in AD may have on influencing TDP-43 proteinopathy and the development of AD, LATE, or the 2 being comorbid with each other.
Collapse
Affiliation(s)
- Angelo Jamerlan
- Department of Bionano Technology, Gachon University, Seongnam-si, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam-si, Republic of Korea.
| |
Collapse
|
10
|
Chen HJ, Topp SD, Hui HS, Zacco E, Katarya M, McLoughlin C, King A, Smith BN, Troakes C, Pastore A, Shaw CE. RRM adjacent TARDBP mutations disrupt RNA binding and enhance TDP-43 proteinopathy. Brain 2019; 142:3753-3770. [PMID: 31605140 PMCID: PMC6885686 DOI: 10.1093/brain/awz313] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) presents with focal muscle weakness due to motor neuron degeneration that becomes generalized, leading to death from respiratory failure within 3-5 years from symptom onset. Despite the heterogeneity of aetiology, TDP-43 proteinopathy is a common pathological feature that is observed in >95% of ALS and tau-negative frontotemporal dementia (FTD) cases. TDP-43 is a DNA/RNA-binding protein that in ALS and FTD translocates from being predominantly nuclear to form detergent-resistant, hyperphosphorylated aggregates in the cytoplasm of affected neurons and glia. Mutations in TARDBP account for 1-4% of all ALS cases and almost all arise in the low complexity C-terminal domain that does not affect RNA binding and processing. Here we report an ALS/FTD kindred with a novel K181E TDP-43 mutation that is located in close proximity to the RRM1 domain. To offer predictive gene testing to at-risk family members, we undertook a series of functional studies to characterize the properties of the mutation. Spectroscopy studies of the K181E protein revealed no evidence of significant misfolding. Although it is unable to bind to or splice RNA, it forms abundant aggregates in transfected cells. We extended our study to include other ALS-linked mutations adjacent to the RRM domains that also disrupt RNA binding and greatly enhance TDP-43 aggregation, forming detergent-resistant and hyperphosphorylated inclusions. Lastly, we demonstrate that K181E binds to, and sequesters, wild-type TDP-43 within nuclear and cytoplasmic inclusions. Thus, we demonstrate that TDP-43 mutations that disrupt RNA binding greatly enhance aggregation and are likely to be pathogenic as they promote wild-type TDP-43 to mislocalize and aggregate acting in a dominant-negative manner. This study highlights the importance of RNA binding to maintain TDP-43 solubility and the role of TDP-43 aggregation in disease pathogenesis.
Collapse
Affiliation(s)
- Han-Jou Chen
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | - Simon D Topp
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Ho Sang Hui
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Elsa Zacco
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Malvika Katarya
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Conor McLoughlin
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Andrew King
- MRC London Neurodegenerative Diseases Brain Bank, De Crespigny Park, SE5 8AF, London, UK
| | - Bradley N Smith
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Claire Troakes
- MRC London Neurodegenerative Diseases Brain Bank, De Crespigny Park, SE5 8AF, London, UK
| | - Annalisa Pastore
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Roczniak-Ferguson A, Ferguson SM. Pleiotropic requirements for human TDP-43 in the regulation of cell and organelle homeostasis. Life Sci Alliance 2019; 2:2/5/e201900358. [PMID: 31527135 PMCID: PMC6749094 DOI: 10.26508/lsa.201900358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is an RNA-binding protein that forms cytoplasmic aggregates in multiple neurodegenerative diseases. Although the loss of normal TDP-43 functions likely contributes to disease pathogenesis, the cell biological consequences of human TDP-43 depletion are not well understood. We, therefore, generated human TDP-43 knockout (KO) cells and subjected them to parallel cell biological and transcriptomic analyses. These efforts yielded three important discoveries. First, complete loss of TDP-43 resulted in widespread morphological defects related to multiple organelles, including Golgi, endosomes, lysosomes, mitochondria, and the nuclear envelope. Second, we identified a new role for TDP-43 in controlling mRNA splicing of Nup188 (nuclear pore protein). Third, analysis of multiple amyotrophic lateral sclerosis causing TDP-43 mutations revealed a broad ability to support splicing of TDP-43 target genes. However, as some TDP-43 disease-causing mutants failed to fully support the regulation of specific target transcripts, our results raise the possibility of mutation-specific loss-of-function contributions to disease pathology.
Collapse
Affiliation(s)
- Agnes Roczniak-Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:25. [PMID: 30837838 PMCID: PMC6382748 DOI: 10.3389/fnmol.2019.00025] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90-95%) are sporadic (sALS), among familial ALS cases 5-10% involve the inheritance of mutations in the TARDBP gene and the remaining (90-95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS, and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo, liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Basant K. Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
13
|
Miguel L, Avequin T, Pons M, Frebourg T, Campion D, Lecourtois M. FTLD/ALS-linked TDP-43 mutations do not alter TDP-43's ability to self-regulate its expression in Drosophila. Brain Res 2018; 1695:1-9. [PMID: 29778779 DOI: 10.1016/j.brainres.2018.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
TDP-43 is a major disease-causing protein in amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Today, >50 missense mutations in the TARDBP/TDP-43 gene have been described in patients with FTLD/ALS. However, the functional consequences of FTLD/ALS-linked TDP-43 mutations are not fully elucidated. In the physiological state, TDP-43 expression is tightly regulated through an autoregulatory negative feedback loop. Maintaining normal TDP-43 protein levels is critical for proper physiological functions of the cells. In the present study, we investigated whether the FTLD/ALS-associated mutations could interfere with TDP-43 protein's capacity to modulate its own protein levels using Drosophila as an experimental model. Our data show that FTLD/ALS-associated mutant proteins regulate TDP-43 production with the same efficiency as the wild-type form of the protein. Thus, FTLD/ALS-linked TDP-43 mutations do not alter TDP-43's ability to self-regulate its expression and consequently of the homeostasis of TDP-43 protein levels.
Collapse
Affiliation(s)
- Laetitia Miguel
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France
| | - Tracey Avequin
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France
| | - Marine Pons
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France
| | - Thierry Frebourg
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France; Department of Genetics, Rouen University Hospital, 76301 Rouen, France
| | - Dominique Campion
- Normandie University, UNIROUEN, Inserm, U1245, IRIB, Rouen, France; Centre Hospitalier du Rouvray, Sotteville-Lès-Rouen, France
| | | |
Collapse
|
14
|
Olesnicky EC, Wright EG. Drosophila as a Model for Assessing the Function of RNA-Binding Proteins during Neurogenesis and Neurological Disease. J Dev Biol 2018; 6:E21. [PMID: 30126171 PMCID: PMC6162566 DOI: 10.3390/jdb6030021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a common theme in many neurodegenerative disorders, highlighting the importance of RNA processing in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their widespread nature and roles in neurological disease, the molecular mechanisms and networks of regulated target RNAs have been defined for only a small number of specific RBPs. This review aims to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction contributes to neurological disease.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| |
Collapse
|
15
|
Dourlen P, Chapuis J, Lambert JC. Using High-Throughput Animal or Cell-Based Models to Functionally Characterize GWAS Signals. CURRENT GENETIC MEDICINE REPORTS 2018; 6:107-115. [PMID: 30147999 PMCID: PMC6096908 DOI: 10.1007/s40142-018-0141-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The advent of genome-wide association studies (GWASs) constituted a breakthrough in our understanding of the genetic architecture of multifactorial diseases. For Alzheimer's disease (AD), more than 20 risk loci have been identified. However, we are now facing three new challenges: (i) identifying the functional SNP or SNPs in each locus, (ii) identifying the causal gene(s) in each locus, and (iii) understanding these genes' contribution to pathogenesis. RECENT FINDINGS To address these issues and thus functionally characterize GWAS signals, a number of high-throughput strategies have been implemented in cell-based and whole-animal models. Here, we review high-throughput screening, high-content screening, and the use of the Drosophila model (primarily with reference to AD). SUMMARY We describe how these strategies have been successfully used to functionally characterize the genes in GWAS-defined risk loci. In the future, these strategies should help to translate GWAS data into knowledge and treatments.
Collapse
Affiliation(s)
- Pierre Dourlen
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Julien Chapuis
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Jean-Charles Lambert
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| |
Collapse
|
16
|
Tang SS, Li J, Tan L, Yu JT. Genetics of Frontotemporal Lobar Degeneration: From the Bench to the Clinic. J Alzheimers Dis 2017; 52:1157-76. [PMID: 27104909 DOI: 10.3233/jad-160236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is a clinically heterogeneous neurodegenerative disease with a strong genetic component. In this review, we summarize most common mutations in MAPT, GRN, and C90RF72, as well as less common mutations in VCP, CHMP2B, TARDBP, FUS gene and so on. Several guidelines have been developed to help gene testing based on genotype-phenotype correlation, the underlying histopathological subtypes, and the neuroanatomic associations. Furthermore, we also summarize molecular pathways implicated by genes and novel targets for FTLD prevention and management in recent years.
Collapse
|
17
|
Dutta K, Patel P, Rahimian R, Phaneuf D, Julien JP. Withania somnifera Reverses Transactive Response DNA Binding Protein 43 Proteinopathy in a Mouse Model of Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration. Neurotherapeutics 2017; 14:447-462. [PMID: 27928708 PMCID: PMC5398980 DOI: 10.1007/s13311-016-0499-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abnormal cytoplasmic mislocalization of transactive response DNA binding protein 43 (TARDBP or TDP-43) in degenerating neurons is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous work suggested that nuclear factor kappa B (NF-κB) may constitute a therapeutic target for TDP-43-mediated disease. Here, we investigated the effects of root extract of Withania somnifera (Ashwagandha), an herbal medicine with anti-inflammatory properties, in transgenic mice expressing a genomic fragment encoding human TDP-43A315T mutant. Ashwagandha extract was administered orally to hTDP-43A315T mice for a period of 8 weeks starting at 64 and 48 weeks of age for males and females, respectively. The treatment of hTDP-43A315T mice ameliorated their motor performance on rotarod test and cognitive function assessed by the passive avoidance test. Microscopy examination of tissue samples revealed that Ashwagandha treatment of hTDP-43A315T mice improved innervation at neuromuscular junctions, attenuated neuroinflammation, and reduced NF-κB activation. Remarkably, Ashwagandha treatment reversed the cytoplasmic mislocalization of hTDP-43 in spinal motor neurons and in brain cortical neurons of hTDP-43A315T mice and it reduced hTDP-43 aggregation. In vitro evidence is presented that the neuronal rescue of TDP-43 mislocalization may be due to the indirect effect of factors released from microglial cells exposed to Ashwagandha. These results suggest that Ashwagandha and its constituents might represent promising therapeutics for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Kallol Dutta
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Reza Rahimian
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada
| | - Daniel Phaneuf
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada
| | - Jean-Pierre Julien
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada.
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, G1V 0A6, Canada.
| |
Collapse
|
18
|
Wobst HJ, Wesolowski SS, Chadchankar J, Delsing L, Jacobsen S, Mukherjee J, Deeb TZ, Dunlop J, Brandon NJ, Moss SJ. Cytoplasmic Relocalization of TAR DNA-Binding Protein 43 Is Not Sufficient to Reproduce Cellular Pathologies Associated with ALS In vitro. Front Mol Neurosci 2017; 10:46. [PMID: 28286471 PMCID: PMC5323424 DOI: 10.3389/fnmol.2017.00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/10/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in the gene TARDBP, which encodes TAR DNA-binding protein 43 (TDP-43), are a rare cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While the majority of mutations are found in the C-terminal glycine-rich domain, an alanine to valine amino acid change at position 90 (A90V) in the bipartite nuclear localization signal (NLS) of TDP-43 has been described. This sequence variant has previously been shown to cause cytoplasmic mislocalization of TDP-43 and decrease protein solubility, leading to the formation of insoluble aggregates. Since the A90V mutation has been described both in patients as well as healthy controls, its pathogenic potential in ALS and FTD remains unclear. Here we compare properties of overexpressed A90V to the highly pathogenic M337V mutation. Though both mutations drive mislocalization of the protein to the cytoplasm to the same extent, M337V produces more significant damage in terms of protein solubility, levels of pathogenic phosphorylation, and formation of C-terminal truncated protein species. Furthermore, the M337V, but not the A90V mutant, leads to a downregulation of histone deacetylase 6 and Ras GTPase-activating protein-binding protein. We conclude that in the absence of another genetic or environmental ‘hit’ the A90V variant is not sufficient to cause the deleterious phenotypes associated with ALS and FTD, despite prominent cytoplasmic protein relocalization of TDP-43.
Collapse
Affiliation(s)
- Heike J Wobst
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - Steven S Wesolowski
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Jayashree Chadchankar
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - Louise Delsing
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, BostonMA, USA; IMED Biotech Unit, AstraZeneca Discovery ScienceMölndal, Sweden
| | - Steven Jacobsen
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Jayanta Mukherjee
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - Tarek Z Deeb
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, Boston MA, USA
| | - John Dunlop
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Nicholas J Brandon
- IMED Biotech Unit, AstraZeneca Neuroscience IMED, AstraZeneca, Cambridge MA, USA
| | - Stephen J Moss
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University School of Medicine, BostonMA, USA; Department of Neuroscience, Tufts University School of Medicine, BostonMA, USA
| |
Collapse
|
19
|
Li YQ, Tan MS, Yu JT, Tan L. Frontotemporal Lobar Degeneration: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2015; 53:6091-6105. [PMID: 26537902 DOI: 10.1007/s12035-015-9507-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is characterized by progressive deterioration of frontal and anterior temporal lobes of the brain and often exhibits frontotemporal dementia (FTD) on clinic, in <65-year-old patients at the time of diagnosis. Interdisciplinary approaches combining genetics, molecular and cell biology, and laboratory animal science have revealed some of its potential molecular mechanisms. Although there is still no effective treatment to delay, prevent, and reverse the progression of FTD, emergence of agents targeting molecular mechanisms has been beginning to promote potential pharmaceutical development. Our review summarizes the latest new findings of FTLD and challenges in FTLD therapy.
Collapse
Affiliation(s)
- Ya-Qing Li
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
20
|
Abstract
The transactive response DNA binding protein (TDP-43) has long been characterized as a main hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U, also known as FTLD-TDP). Several studies have indicated TDP-43 deposits in Alzheimer's disease (AD) brains and have robust connection with AD clinical phenotype. FTLD-U, which was symptomatically connected with AD, may be predictable for the comprehension of the role TDP-43 in AD. TDP-43 may contribute to AD through both β-amyloid (Aβ)-dependent and Aβ-independent pathways. In this article, we summarize the latest studies concerning the role of TDP-43 in AD and explore TDP-43 modulation as a potential therapeutic strategy for AD. However, to date, little of pieces of the research on TDP-43 have been performed to investigate the role in AD; more investigations need to be confirmed in the future.
Collapse
|
21
|
Buratti E. Functional Significance of TDP-43 Mutations in Disease. ADVANCES IN GENETICS 2015; 91:1-53. [DOI: 10.1016/bs.adgen.2015.07.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|