1
|
Lang K, Quinkler M, Kienitz T. Mineralocorticoid replacement therapy in salt-wasting congenital adrenal hyperplasia. Clin Endocrinol (Oxf) 2024; 101:346-358. [PMID: 37564007 DOI: 10.1111/cen.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Patients with salt-wasting congenital adrenal hyperplasia (SW-CAH) usually show pronounced impairment of aldosterone secretion and, therefore, also require mineralocorticoid replacement. While a lot of research and discussion focusses on the glucocorticoid therapy in SW-CAH to replace the missing cortisol and to control adrenal androgen excess, very little research is dealing with mineralocorticoid replacement. However, recent data demonstrated an increased cardiovascular risk in adult CAH patients urging to reflect also on the current mineralocorticoid replacement therapy. In this review, we explain the role and function of the mineralocorticoid receptor, its ligands and inhibitors and its relevance for the therapy of patients with SW-CAH. We performed an extensive literature search and present data on mineralocorticoid therapy in SW-CAH patients as well as clinical advice how to monitor and optimise mineralocorticoid replacement therapy.
Collapse
Affiliation(s)
| | - Marcus Quinkler
- Endocrinology in Charlottenburg, Berlin, Germany
- Department of Endocrinology and Metabolism, Charite-Universitätsmedizin, Campus Mitte, Berlin, Germany
| | - Tina Kienitz
- Endocrinology in Charlottenburg, Berlin, Germany
| |
Collapse
|
2
|
Kulakova E, Graumann L, Wingenfeld K. The Hypothalamus-Pituitary-Adrenal Axis and Social Cognition in Borderline Personality Disorder. Curr Neuropharmacol 2024; 22:378-394. [PMID: 37539934 PMCID: PMC10845078 DOI: 10.2174/1570159x21666230804085639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/28/2023] [Accepted: 05/28/2023] [Indexed: 08/05/2023] Open
Abstract
Borderline personality disorder (BPD) is characterized by emotional instability, impulsivity and unstable interpersonal relationships. Patients experience discomforting levels of distress, inducing symptoms like dissociation, aggression or withdrawal. Social situations are particularly challenging, and acute social stress can reduce patients' cognitive and social functioning. In patients with Major Depressive Disorder or Posttraumatic Stress Disorder, which show high comorbidity with BPD, the endocrine stress response is characterized by Hypothalamus-Pituitary-Adrenal (HPA) axis dysfunction, which affects cognitive functioning. Compared to these clinical groups, research on HPA-axis function in BPD is relatively scarce, but evidence points towards a blunted cortisol reactivity to acute stress. Since BPD patients are particularly prone to social stress and experience high subjective difficulties in these situations, it seems plausible that HPA-axis dysregulation might contribute to decreased social cognition in BPD. The present review summarizes findings on the HPA-axis function in BPD and its association with social cognition following acute social stress. For this purpose, we review literature that employed a widely used social stressor (Trier Social Stress Test, TSST) to study the effects of acute social stress on social cognition and the HPA-axis response. We contrast these findings with studies on social cognition that employed Cyberball, another widely used social stressor that lacks HPA-axis involvement. We conclude that research on social cognition in BPD reveals heterogeneous results with no clear relationship between social functioning and HPA-axis response. More research is needed to better understand the psychophysiological underpinnings of impaired social cognition in BPD.
Collapse
Affiliation(s)
- Eugenia Kulakova
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| | - Livia Graumann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| | - Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
3
|
De Alcubierre D, Ferrari D, Mauro G, Isidori AM, Tomlinson JW, Pofi R. Glucocorticoids and cognitive function: a walkthrough in endogenous and exogenous alterations. J Endocrinol Invest 2023; 46:1961-1982. [PMID: 37058223 PMCID: PMC10514174 DOI: 10.1007/s40618-023-02091-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE The hypothalamic-pituitary-adrenal (HPA) axis exerts many actions on the central nervous system (CNS) aside from stress regulation. Glucocorticoids (GCs) play an important role in affecting several cognitive functions through the effects on both glucocorticoid (GR) and mineralocorticoid receptors (MR). In this review, we aim to unravel the spectrum of cognitive dysfunction secondary to derangement of circulating levels of endogenous and exogenous glucocorticoids. METHODS All relevant human prospective and retrospective studies published up to 2022 in PubMed reporting information on HPA disorders, GCs, and cognition were included. RESULTS Cognitive impairment is commonly found in GC-related disorders. The main brain areas affected are the hippocampus and pre-frontal cortex, with memory being the most affected domain. Disease duration, circadian rhythm disruption, circulating GCs levels, and unbalanced MR/GR activation are all risk factors for cognitive decline in these patients, albeit with conflicting data among different conditions. Lack of normalization of cognitive dysfunction after treatment is potentially attributable to GC-dependent structural brain alterations, which can persist even after long-term remission. CONCLUSION The recognition of cognitive deficits in patients with GC-related disorders is challenging, often delayed, or mistaken. Prompt recognition and treatment of underlying disease may be important to avoid a long-lasting impact on GC-sensitive areas of the brain. However, the resolution of hormonal imbalance is not always followed by complete recovery, suggesting irreversible adverse effects on the CNS, for which there are no specific treatments. Further studies are needed to find the mechanisms involved, which may eventually be targeted for treatment strategies.
Collapse
Affiliation(s)
- D De Alcubierre
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - D Ferrari
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - G Mauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - A M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - J W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - R Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK.
| |
Collapse
|
4
|
Fan X, Zhao Z, Huang Z, Wu M, Wang D, Xiao J. Mineralocorticoid receptor agonist aldosterone rescues hippocampal neural stem cell proliferation defects and improves postoperative cognitive function in aged mice. World J Biol Psychiatry 2023; 24:149-161. [PMID: 35615969 DOI: 10.1080/15622975.2022.2082524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Hippocampal neurogenesis is closely related to learning and memory, and hippocampal neurogenesis disorders are involved in the development of many neurodegenerative diseases. Mineralocorticoid receptor (MR) plays a vital role in regulating stress response, neuroendocrine and cognitive functions, and is involved in regulating the integrity and stability of neural networks. However, the potential role of MR in the pathogenesis of postoperative cognitive dysfunction (POCD) is unclear. Therefore, this study evaluated the effect and mechanism of MR activation on postoperative hippocampal neurogenesis and cognitive function in aged mice. METHODS 18-month-old male Kunming mice were randomly divided into Control group (C group), Surgery group (S group), Surgery+ Aldosterone group (S+Aldo group), Surgery + Wortmannin group (S+Wort group), Surgery + Aldosterone + Wortmannin group (S+Aldo+Wort group). Laparotomy was used to establish an animal model of postoperative cognitive dysfunction. After surgery, mice were intraperitoneally injected with aldosterone (100 ug/kg,150 ug/kg,200 ug/kg) and / or wortmannin (1 mg/kg); One day before the sacrifice, mice were injected intraperitoneally with BrdU (100 mg / kg / time, 3 times in total). Mice were subjected to Morris water maze and field tests at 1, 3, 7, and 14 days after surgery. Immunofluorescence was used to detect the number of BrdU +, Nestin +, BrdU/Nestin + positive cells in the hippocampal dentate gyrus of mice at 1, 3, 7 and 14 days after surgery. Western-blot was used to detect PI3K/Akt/GSK-3β signaling pathway related proteins Akt, p-Akt, GSK-3β, P-GSK-3β expression. RESULTS Stress impairs the performance of aged mice in water maze and open field tests, reduces the number of BrdU/Nestin+ cells in the hippocampal dentate gyrus, and inhibits the phosphorylation of Akt and GSK-3β proteins in the hippocampus. Aldosterone treatment promotes P-Akt, P-GSK-3β protein expression and hippocampal neural stem cell proliferation, and improves postoperative cognitive dysfunction. However, wortmannin treatment significantly reversed these effects of aldosterone. CONCLUSIONS The mineralocorticoid receptor agonist aldosterone promotes the proliferation of hippocampal neural stem cells and improves cognitive dysfunction in aged mice after surgery, and the mechanism may be related to activation of PI3K/Akt/GSK-3β signaling.
Collapse
Affiliation(s)
- Xuhong Fan
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Zhenyu Zhao
- Department of Anesthesiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zixia Huang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Mingyue Wu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Deming Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Ji Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
5
|
Kaczmarczyk M, Wingenfeld K, Nowacki J, Chae WR, Deuter CE, Piber D, Otte C. No influence of mineralocorticoid and glutamatergic NMDA receptor stimulation on spatial learning and memory in individuals with major depression. J Psychiatr Res 2022; 152:97-103. [PMID: 35717867 DOI: 10.1016/j.jpsychires.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with impairments in spatial learning and memory and with altered functioning of central mineralocorticoid receptors (MR) and glutamatergic N-methyl-D-aspartate receptors (NMDA-R). Both receptors are highly expressed in the hippocampus and prefrontal cortex - brain areas that are critical for spatial learning and memory. Here, we examined the effects of separate and combined MR and NMDA-R stimulation on spatial learning and memory in individuals with MDD and healthy controls. METHODS We used a randomized, double-blind, placebo-controlled between-group study design to examine the effects of separate and combined stimulation of the MR (with 0.4 mg fludrocortisone) and NMDA-R (with 250 mg D-cycloserine) in 116 unmedicated individuals with MDD (mean age: 34.7 ± 13.3 years; 78.4% women) and 116 age-, sex-, and education-matched healthy controls. Participants were randomly assigned to one of four conditions: 1) placebo; 2) MR stimulation; 3) NMDA-R stimulation; and 4) combined MR/NMDA-R stimulation. Three hours after drug administration, spatial learning and memory were assessed using a virtual Morris Water Maze task. RESULTS Individuals with MDD and healthy controls did not differ in spatial learning and memory performance. Neither separate nor combined MR or NMDA-R stimulation altered measures of spatial performance. CONCLUSION In this study of relatively young, predominantly female, and unmedicated individuals, we found no effect of MDD and no effect of separate or combined MR and NMDA-R stimulation on spatial learning and memory.
Collapse
Affiliation(s)
- Michael Kaczmarczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany.
| | - Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Jan Nowacki
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Woo Ri Chae
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Christian Eric Deuter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Dominique Piber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
6
|
Paul SN, Wingenfeld K, Otte C, Meijer OC. Brain Mineralocorticoid receptor in health and disease: from molecular signaling to cognitive and emotional function. Br J Pharmacol 2022; 179:3205-3219. [PMID: 35297038 PMCID: PMC9323486 DOI: 10.1111/bph.15835] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
Brain mineralocorticoid receptors (MR) mediate effects of glucocorticoid hormones in stress adaptation, as well as the effects of aldosterone itself in relation to salt homeostasis. Brain stem MRs respond to aldosterone, whereas forebrain MRs mediate rapid and delayed glucocorticoid effects in conjunction with the glucocorticoid receptor (GR). MR‐mediated effects depend on age, gender, genetic variations, and environmental influences. Disturbed MR activity through chronic stress, certain (endocrine) diseases or during glucocorticoid therapy can cause deleterious effects on affective state, cognitive and behavioural function in susceptible individuals. Considering the important role MR plays in cognition and emotional function in health and disease, MR modulation by pharmacological intervention could relieve stress‐ and endocrine‐related symptoms. Here, we discuss recent pharmacological interventions in the clinic and genetic developments in the molecular underpinnings of MR signalling. Further understanding of MR‐dependent pathways may help to improve psychiatric symptoms in a diversity of settings.
Collapse
Affiliation(s)
- Susana N Paul
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Wingenfeld
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany
| | - Christian Otte
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Nowacki J, Wingenfeld K, Kaczmarczyk M, Chae WR, Salchow P, Deuter CE, Piber D, Otte C. Selective attention to emotional stimuli and emotion recognition in patients with major depression: The role of mineralocorticoid and glutamatergic NMDA receptors. J Psychopharmacol 2021; 35:1017-1023. [PMID: 33908312 DOI: 10.1177/02698811211009797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mineralocorticoid receptors (MR) are highly expressed in limbic brain areas and prefrontal cortex, which are closely related to selective attention to emotional stimuli and emotion recognition. Patients with major depressive disorder (MDD) show alterations in MR functioning and both cognitive processes. MR stimulation improves cognitive processes in MDD and leads to glutamate release that binds upon N-methyl-D-aspartate receptors (NMDA-R). AIMS We examined (1) whether MR stimulation has beneficial effects on selective attention to emotional stimuli and on emotion recognition and (2) whether these advantageous effects can be improved by simultaneous NMDA-R stimulation. METHODS We examined 116 MDD patients and 116 healthy controls matched for age (M = 34 years), sex (78% women), and education in the following conditions: no pharmacological stimulation (placebo), MR stimulation (0.4 mg fludrocortisone + placebo), NMDA-R stimulation (placebo + 250 mg D-cycloserine (DCS)), MR + NMDA-R stimulation (fludrocortisone + DCS). An emotional dot probe task and a facial emotion recognition task were used to measure selective attention to emotional stimuli and emotion recognition. RESULTS Patients with MDD and healthy individuals did not differ in task performance. MR stimulation had no effect on both cognitive processes in both groups. Across groups, NMDA-R stimulation had no effect on selective attention but showed a small effect on emotion recognition by increasing accuracy to recognize angry faces. CONCLUSIONS Relatively young unmedicated MDD patients showed no depression-related cognitive deficits compared with healthy controls. Separate MR and simultaneous MR and NMDA-R stimulation revealed no advantageous effects on cognition, but NMDA-R might be involved in emotion recognition.
Collapse
Affiliation(s)
- Jan Nowacki
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katja Wingenfeld
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Kaczmarczyk
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Woo Ri Chae
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Paula Salchow
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Eric Deuter
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominique Piber
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Otte
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Blacha AK, Rahvar AH, Flitsch J, van de Loo I, Kropp P, Harbeck B. Impaired attention in patients with adrenal insufficiency - Impact of unphysiological therapy. Steroids 2021; 167:108788. [PMID: 33412217 DOI: 10.1016/j.steroids.2020.108788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022]
Abstract
Patients with adrenal insufficiency (AI) are treated with glucocorticoid (GC) replacement therapy. Although current GC regimens aim to mimic the physiological circadian rhythm of cortisol secretion, temporary phases of hypo- and hypercortisolism are common undesired effects. Both conditions may lead to impairment in cognitive functioning. At present, little is known about cognitive functioning in patients with AI, especially regarding the effects of dosage and duration of glucocorticoid replacement therapy. There is also little data available comparing the effects of GC therapy on patients with primary (PAI) and secondary (SAI) forms of AI. In this study 40 adults with AI (21 PAI, 19 SAI) substituted with hydrocortisone (HC) and 20 matched healthy controls underwent 10 different neuropsychological tests evaluating memory, executive functioning, attention, psychomotricity and general intellectual ability. Furthermore demographic data, dosage of HC, duration of therapy and co-medication were evaluated. Patients were compared in groups with regard to diagnosis, dosage and duration of therapy. Patients showed worse performance than controls in attention, though patients with PAI and SAI seemed to be equally impaired. There were no limitations in intellectual abilities or memory function. High dosage of HC was found to impair attention, visual-motoric skills and executive functioning while the duration of therapy showed no significant impact on cognitive functions. In conclusion, our study showed that AI patients on HC replacement therapy reveal significant cognitive deficits concerning attention. There was no difference between patients with PAI and SAI. Furthermore, high dosage seems to have a negative impact especially on executive functioning.
Collapse
Affiliation(s)
| | - Amir H Rahvar
- University Medical Center Hamburg-Eppendorf, Germany
| | - Jörg Flitsch
- University Medical Center Hamburg-Eppendorf, Germany
| | | | | | | |
Collapse
|
9
|
Cognitive deficits and rehabilitation mechanisms in mild traumatic brain injury patients revealed by EEG connectivity markers. Clin Neurophysiol 2021; 132:554-567. [PMID: 33453686 DOI: 10.1016/j.clinph.2020.11.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To explore the multiple specific biomarkers and cognitive compensatory mechanisms of mild traumatic brain injury (mTBI) patients at recovery stage. METHODS The experiment was performed in two sections. In Section I, using event-related potential, event-related oscillation and spatial phase-synchronization, we explored neural dynamics in 24 volunteered healthy controls (HC) and 38 patients at least 6 months post-mTBI (19 with epidural hematoma, EDH; 19 with subdural hematoma, SDH) during a Go/NoGo task. In Section II, according to the neuropsychological scales, patients were divided into sub-groups to assess these electroencephalography (EEG) indicators in identifying different rehabilitation outcomes of mTBI. RESULTS In Section I, mean amplitudes of NoGo-P3 and P3d were decreased in mTBI patients relative to HC, and NoGo-theta power in the non-injured hemisphere was decreased in SDH patients only. In Section II, patients with chronic neuropsychological defects exhibited more serious impairments of intra-hemispheric connectivity, whereas inter-hemispheric centro-parietal and frontal connectivity were enhanced in response to lesions. CONCLUSIONS EEG distinguished mTBI patients from healthy controls, and estimated different rehabilitation outcomes of mTBI. The centro-parietal and frontal connectivity are the main compensatory mechanism for the recovery of mTBI patients. SIGNIFICANCE EEG measurements and network connectivity can track recovery process and mechanism of mTBI.
Collapse
|
10
|
Henry M, Thomas KGF, Ross IL. Sleep, Cognition and Cortisol in Addison's Disease: A Mechanistic Relationship. Front Endocrinol (Lausanne) 2021; 12:694046. [PMID: 34512546 PMCID: PMC8429905 DOI: 10.3389/fendo.2021.694046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
Sleep is a critical biological process, essential for cognitive well-being. Neuroscientific literature suggests there are mechanistic relations between sleep disruption and memory deficits, and that varying concentrations of cortisol may play an important role in mediating those relations. Patients with Addison's disease (AD) experience consistent and predictable periods of sub- and supra-physiological cortisol concentrations due to lifelong glucocorticoid replacement therapy, and they frequently report disrupted sleep and impaired memory. These disruptions and impairments may be related to the failure of replacement regimens to restore a normal circadian rhythm of cortisol secretion. Available data provides support for existing theoretical frameworks which postulate that in AD and other neuroendocrine, neurological, or psychiatric disorders, disrupted sleep is an important biological mechanism that underlies, at least partially, the memory impairments that patients frequently report experiencing. Given the literature linking sleep disruption and cognitive impairment in AD, future initiatives should aim to improve patients' cognitive performance (and, indeed, their overall quality of life) by prioritizing and optimizing sleep. This review summarizes the literature on sleep and cognition in AD, and the role that cortisol concentrations play in the relationship between the two.
Collapse
Affiliation(s)
- Michelle Henry
- Centre for Higher Education Development, University of Cape Town, Cape Town, South Africa
- *Correspondence: Michelle Henry,
| | | | - Ian Louis Ross
- Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Cognitive and emotional empathy after stimulation of brain mineralocorticoid and NMDA receptors in patients with major depression and healthy controls. Neuropsychopharmacology 2020; 45:2155-2161. [PMID: 32722659 PMCID: PMC7785026 DOI: 10.1038/s41386-020-0777-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Mineralocorticoid receptors (MR) are predominantly expressed in the hippocampus and prefrontal cortex. Both brain areas are associated with social cognition, which includes cognitive empathy (ability to understand others' emotions) and emotional empathy (ability to empathize with another person). MR stimulation improves memory and executive functioning in patients with major depressive disorder (MDD) and healthy controls, and leads to glutamate-mediated N-methyl-D-aspartate receptor (NMDA-R) signaling. We examined whether the beneficial effects of MR stimulation can be extended to social cognition (empathy), and whether DCS would have additional beneficial effects. In this double-blind placebo-controlled single-dose study, we randomized 116 unmedicated MDD patients (mean age 34 years, 78% women) and 116 age-, sex-, and education years-matched healthy controls to four conditions: MR stimulation (fludrocortisone (0.4 mg) + placebo), NMDA-R stimulation (placebo + D-cycloserine (250 mg)), MR and NMDA-R stimulation (both drugs), or placebo. Cognitive and emotional empathy were assessed by the Multifaceted Empathy Test. The study was registered on clinicaltrials.gov (NCT03062150). MR stimulation increased cognitive empathy across groups, whereas NMDA-R stimulation decreased cognitive empathy in MDD patients only. Independent of receptor stimulation, cognitive empathy did not differ between groups. Emotional empathy was not affected by MR or NMDA-R stimulation. However, MDD patients showed decreased emotional empathy compared with controls but, according to exploratory analyses, only for positive emotions. We conclude that MR stimulation has beneficial effects on cognitive empathy in MDD patients and healthy controls, whereas NMDA-R stimulation decreased cognitive empathy in MDD patients. It appears that MR rather than NMDA-R are potential treatment targets to modulate cognitive empathy in MDD.
Collapse
|
12
|
Terock J, Van der Auwera S, Janowitz D, Wittfeld K, Teumer A, Grabe HJ. Functional polymorphisms of the mineralocorticoid receptor gene NR3C2 are associated with diminished memory decline: Results from a longitudinal general-population study. Mol Genet Genomic Med 2020; 8:e1345. [PMID: 32558353 PMCID: PMC7507013 DOI: 10.1002/mgg3.1345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The mineralocorticoid receptor (MR) in the brain has a key role in the regulation of the central stress response and is associated with memory performance. We investigated whether the genetic polymorphisms rs5522 and rs2070951 of NR3C2 showed main and interactive effects with childhood trauma on memory decline. METHODS Declarative memory was longitudinally assessed in 1,318 participants from the community-dwelling Study of Health in Pomerania using the Verbal Learning and Memory Test (VLMT). In a subsample of 377 participants aged 60 and older, the Mini-Mental Status Examination (MMSE) was additionally applied. Mean follow-up time for the VLMT and MMSE were 6.4 and 10.7 years, respectively. RESULTS Homozygous carriers of the G allele of rs2070951 (p < .01) and of the A allele of rs5522 (p < .001) showed higher immediate recall of words as compared to carriers of C allele (rs2070951) or the G allele (rs5522). The CG haplotype was associated with decreased recall (p < .001). Likewise, in the subsample of older patients, the AA genotype of rs5522 was associated with higher MMSE scores (p < .05). CG haplotypes showed significantly reduced MMSE scores in comparison to the reference haplotype (β = -0.60; p < .01). CONCLUSIONS Our results indicate that the GG genotype of rs2070951 as well as the AA genotype of rs5522 are associated with diminished memory decline.
Collapse
Affiliation(s)
- Jan Terock
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, Helios Hanseklinikum Stralsund, Stralsund, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Plieger T, Reuter M. Stress & executive functioning: A review considering moderating factors. Neurobiol Learn Mem 2020; 173:107254. [PMID: 32485224 DOI: 10.1016/j.nlm.2020.107254] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
A multitude of studies investigating the effects of stress on cognition has produced an inconsistent picture on whether - and under which conditions - stress has advantageous or disadvantageous effects on executive functions (EF). This review provides a short introduction to the concept of stress and its neurobiology, before discussing the need to consider moderating factors in the association between stress and EF. Three core domains are described and discussed in relation to the interplay between stress and cognition: the influence of different paradigms on physiological stress reactivity, individual differences in demographic and biological factors, and task-related features of cognitive tasks. Although some moderating variables such as the endocrine stress response have frequently been considered in single studies, no attempt of a holistic overview has been made so far. Therefore, we propose a more nuanced and systematic framework to study the effects of stress on executive functioning, comprising a holistic overview from the induction of stress, via biological mechanisms and interactions with individual differences, to the influence of stress on cognitive performance.
Collapse
Affiliation(s)
- Thomas Plieger
- Department of Psychology, Laboratory of Neurogenetics University of Bonn, Kaiser-Karl-Ring 9, D-53111 Bonn, Germany.
| | - Martin Reuter
- Department of Psychology, Laboratory of Neurogenetics University of Bonn, Kaiser-Karl-Ring 9, D-53111 Bonn, Germany
| |
Collapse
|
14
|
Hakamata Y, Komi S, Sato E, Izawa S, Mizukami S, Moriguchi Y, Motomura Y, Matsui M, Kim Y, Hanakawa T, Inoue Y, Tagaya H. Cortisol-related hippocampal-extrastriate functional connectivity explains the adverse effect of cortisol on visuospatial retrieval. Psychoneuroendocrinology 2019; 109:104310. [PMID: 31404897 DOI: 10.1016/j.psyneuen.2019.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/28/2022]
Abstract
Cortisol is known to affect visuospatial memory through its major binding site in the brain, the hippocampus. The synchronization of neural activity between the hippocampus, prefrontal cortex (PFC), and visual cortex is presumed to be essential for the formation of visuospatial memory because of their visuospatial learning-dependent neuroplasticity. However, it remains unclear how hippocampal connectivity with the PFC and visual cortex is involved in the relationship between cortisol and visuospatial memory in humans. We thus investigated whether functional connectivity (FC) of the hippocampus, specifically its rostral and caudal subdivisions, mediates the relationship between visuospatial memory and endogenous cortisol. One-hundred sixty-six healthy young adults underwent standard neuropsychological tests to assess visuospatial construction (a complex figure copying test) and retrieval (the corresponding recall test) and collected their saliva at 6-time points across 2 consecutive days for measurement of daily cortisol concentrations (dCOR). Ninety of them received resting-state fMRI scans. Greater dCOR was significantly associated with better figure copying performance, but contrastingly with poorer figure recall. In proportion to dCOR, the rostral hippocampus (rHC) showed significantly increased FC with the PFC (including its dorsolateral and medial parts) and the inferior lateral occipital cortex (iLOC), while the caudal hippocampus had increased FC with the anterior middle temporal cortex. Of the cortisol-related hippocampal connectivity, the rHC-iLOC FC was specifically correlated with figure recall and showed complete mediation for the negative relationship of dCOR with figure recall. These results suggest that cortisol might have enhancing effects on visuospatial encoding as well as impairing effects on visuospatial retrieval, possibly due to its occupancy patterns of corticosteroid receptors. Cortisol's adverse effects on visuospatial retrieval might be explained through cortisol-related rostral hippocampal connectivity with the iLOC, which is a part of the extrastriate cortex implicated in visuospatial perception. Thorough dissection of hippocampal-prefrontal-extrastriate connectivity might facilitate the understanding of neural mechanisms underlying cortisol's contrasting effects on encoding (or consolidation) and retrieval of visuospatial information.
Collapse
Affiliation(s)
- Yuko Hakamata
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Japan; Department of Health Science, Kitasato University School of Allied Health Sciences, Japan.
| | - Shotaro Komi
- Department of Radiology, Kitasato University Hospital, Japan
| | - Eisuke Sato
- Department of Medical Radiological Technology, Kyorin University School of Health Sciences, Japan
| | - Shuhei Izawa
- Occupational Stress Research Group, National Institute of Occupational Safety and Health, Japan
| | - Shinya Mizukami
- Department of Clinical Engineering, Kitasato University School of Allied Health Sciences, Japan
| | - Yoshiya Moriguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Japan
| | - Yuki Motomura
- Department of Human Science, Kyushu University, Japan
| | - Mie Matsui
- Institute of Liberal Arts and Science, Kanazawa University, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Japan
| | - Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Japan
| | - Hirokuni Tagaya
- Department of Health Science, Kitasato University School of Allied Health Sciences, Japan
| |
Collapse
|
15
|
Wingenfeld K, Otte C. Mineralocorticoid receptor function and cognition in health and disease. Psychoneuroendocrinology 2019; 105:25-35. [PMID: 30243757 DOI: 10.1016/j.psyneuen.2018.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023]
Abstract
The steroid hormone cortisol is released in response to stress and exerts its effects in the brain via two different receptors: the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). This review - dedicated to Dirk Hellhammer - focusses on the role of MR on cognitive and emotional function in healthy individuals and in stress-associated disorders such as major depressive disorder (MDD) or borderline personality disorder (BPD). Animal data and studies from healthy individuals converge such that MR play an important role in the appraisal of new situations and the following response selection. Decision-making and empathy are important determinants of this response selection and both are affected by MR function. Furthermore, MR are crucially involved in visuospatial navigation and memory in young and elderly healthy individuals whereas the exact physiological role of MR in verbal learning and verbal memory needs to be further characterized. In contrast to studies in healthy participants, age played a moderating role on the effects of MR stimulation on cognition in depressed patients. In young depressed patients, MR stimulation exerted beneficial effects on verbal memory and executive function, whereas in elderly depressed patients MR stimulation led to impaired verbal learning and visuospatial memory. Similar to healthy controls, BPD patients showed enhanced emotional empathy but not cognitive empathy after MR stimulation. Accordingly, this make MR an interesting target for potential pharmacological augmentation of psychotherapy in BPD. Given the important role MR play in cognitive and emotional function in health and disease, further studies should examine whether MR modulation can alleviate cognitive and emotional problems in patients with stress-associated disorders.
Collapse
Affiliation(s)
- Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany.
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
16
|
Ouanes S, Popp J. High Cortisol and the Risk of Dementia and Alzheimer's Disease: A Review of the Literature. Front Aging Neurosci 2019; 11:43. [PMID: 30881301 PMCID: PMC6405479 DOI: 10.3389/fnagi.2019.00043] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/13/2019] [Indexed: 01/09/2023] Open
Abstract
Introduction: Cortisol effects on the brain are exerted through two distinct receptors, inducing complex and even opposite effects on the cerebral structures implicated in the various cognitive functions. High cortisol may also have deleterious effects on the brain structures and contribute to neurodegeneration, in particular Alzheimer’s disease (AD), via different mechanisms. Objective: To examine the interrelationships between cortisol, cognitive impairment and AD. Methods: Review of the literature. Results: Clinical studies found that elevated cortisol was associated with poorer overall cognitive functioning, as well as with poorer episodic memory, executive functioning, language, spatial memory, processing speed, and social cognition; while in animals, glucocorticoid administration resulted in cognitive impairment and abnormal behavior. In cognitively healthy subjects, higher cortisol levels have been associated with an increased risk of cognitive decline and AD. Subjects with dementia and Mild Cognitive Impairment (MCI) due to AD have been found to have higher CSF cortisol levels than cognitively healthy controls. Elevated CSF cortisol may also be associated with a more rapid cognitive decline in MCI due to AD. Elevated cortisol levels have been also found in delirium. High cortisol may mediate the impact of stressful life events, high neuroticism, depression, sleep disturbances, as well as cardiovascular risk factors on cognitive performance, neurodegeneration, and cognitive decline. High cortisol may also exert neurotoxic effects on the hippocampus, and promote oxidative stress and amyloid β peptide toxicity. Further possible underlying mechanisms include the interactions of cortisol with inflammatory mediators, neurotransmitters, and growth factors. Conclusion: Elevated cortisol levels may exert detrimental effects on cognition and contribute to AD pathology. Further studies are needed to investigate cortisol-reducing and glucocorticoidreceptor modulating interventions to prevent cognitive decline.
Collapse
Affiliation(s)
- Sami Ouanes
- Department of Psychiatry, Hospital of Cery, University Hospital of Lausanne, Lausanne, Switzerland.,Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | - Julius Popp
- Department of Psychiatry, Hospital of Cery, University Hospital of Lausanne, Lausanne, Switzerland.,Geriatric Psychiatry, Department of Mental Health and Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
17
|
Deuter CE, Wingenfeld K, Schultebraucks K, Otte C, Kuehl LK. Influence of glucocorticoid and mineralocorticoid receptor stimulation on task switching. Horm Behav 2019; 109:18-24. [PMID: 30684522 DOI: 10.1016/j.yhbeh.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 01/08/2023]
Abstract
The influence of stress on executive functions has been demonstrated in numerous studies and is potentially mediated by the stress-induced cortisol release. Yet, the impact of cortisol on cognitive flexibility and task switching in particular remains equivocal. In this study, we investigated the influence of pharmacological glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) stimulation, two corticosteroid receptor types known to be responsible for cortisol effects on the brain. We conducted two experiments, each with 80 healthy participants (40 women and 40 men), and tested the effect of the unspecific MR/GR agonist hydrocortisone (Experiment I) and the more specific MR agonist fludrocortisone (Experiment II) on switch costs and task rule congruency in a bivalent, cued task switching paradigm. The results did not confirm our hypotheses; we found no significant effects of our manipulations on task switching capacity, although general switching and congruency effects were observed. We discuss the absence of MR/GR-mediated effects and propose alternative mechanisms that could explain stress induced effects on task switching.
Collapse
Affiliation(s)
- Christian E Deuter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany.
| | - Katja Wingenfeld
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Katharina Schultebraucks
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany; New York University School of Medicine, Department of Psychiatry, New York, NY, USA
| | - Christian Otte
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Linn K Kuehl
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| |
Collapse
|
18
|
Glucocorticoid-induced enhancement of extinction-from animal models to clinical trials. Psychopharmacology (Berl) 2019; 236:183-199. [PMID: 30610352 PMCID: PMC6373196 DOI: 10.1007/s00213-018-5116-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Extensive evidence from both animal model and human research indicates that glucocorticoid hormones are crucially involved in modulating memory performance. Glucocorticoids, which are released during stressful or emotionally arousing experiences, enhance the consolidation of new memories, including extinction memory, but reduce the retrieval of previously stored memories. These memory-modulating properties of glucocorticoids have recently received considerable interest for translational purposes because strong aversive memories lie at the core of several fear-related disorders, including post-traumatic stress disorder and phobias. Moreover, exposure-based psychological treatment of these disorders relies on successful fear extinction. In this review, we argue that glucocorticoid-based interventions facilitate fear extinction by reducing the retrieval of aversive memories and enhancing the consolidation of extinction memories. Several clinical trials have already indicated that glucocorticoids might be indeed helpful in the treatment of fear-related disorders.
Collapse
|
19
|
Piber D, Schultebraucks K, Mueller SC, Deuter CE, Wingenfeld K, Otte C. Mineralocorticoid receptor stimulation effects on spatial memory in healthy young adults: A study using the virtual Morris Water Maze task. Neurobiol Learn Mem 2016; 136:139-146. [PMID: 27725248 DOI: 10.1016/j.nlm.2016.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/10/2016] [Accepted: 10/06/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Stress hormones such as cortisol are known to influence a wide range of cognitive functions, including hippocampal based spatial memory. In the brain, cortisol acts via two different receptors: the glucocorticoid (GR) and the mineralocorticoid receptor (MR). As the MR has a high density in the hippocampus, we examined the effects of pharmacological MR stimulation on spatial memory. METHODS Eighty healthy participants (40 women, 40 men, mean age=23.9years±SD=3.3) completed the virtual Morris Water Maze (vMWM) task to test spatial encoding and spatial memory retrieval after receiving 0.4mg fludrocortisone, a MR agonist, or placebo. RESULTS There was no effect of MR stimulation on spatial encoding during the vMWM task. However, participants who received fludrocortisone exhibited improved spatial memory retrieval performance. There was neither a main effect of sex nor a sex-by-treatment interaction. CONCLUSION In young healthy participants, MR stimulation improved hippocampal based spatial memory retrieval in a virtual Morris Water Maze task. Our study not only confirms the importance of MR function in spatial memory, but suggests beneficial effects of acute MR stimulation on spatial memory retrieval in humans.
Collapse
Affiliation(s)
- Dominique Piber
- Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | - Katharina Schultebraucks
- Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Christian Eric Deuter
- Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Katja Wingenfeld
- Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christian Otte
- Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
20
|
de Kloet ER, Otte C, Kumsta R, Kok L, Hillegers MHJ, Hasselmann H, Kliegel D, Joëls M. Stress and Depression: a Crucial Role of the Mineralocorticoid Receptor. J Neuroendocrinol 2016; 28. [PMID: 26970338 DOI: 10.1111/jne.12379] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/30/2016] [Accepted: 02/23/2016] [Indexed: 12/27/2022]
Abstract
Cortisol and corticosterone act on the appraisal process, which comprises the selection of an appropriate coping style and the encoding of the experience for storage in the memory. This action exerted by the stress hormones is mediated by mineralocorticoid receptors (MRs), which are expressed abundantly in the limbic circuitry, particularly in the hippocampus. Limbic MR is down-regulated by chronic stress and during depression but induced by antidepressants. Increased MR activity inhibits hypothalamic-pituitary-adrenal axis activity, promotes slow wave sleep, reduces anxiety and switches circuit connectivity to support coping. Cortisol and emotion-cognition are affected by MR gene haplotypes based on rs5522 and rs2070951. Haplotype 1 (GA) moderates the effects of (early) life stressors, reproductive cycle and oral contraceptives. MR haplotype 2 (CA) is a gain of function variant that protects females against depression by association with an optimistic, resilient phenotype. Activation of MR therefore may offer a target for alleviating depression and cognitive dysfunction. Accordingly, the MR agonist fludrocortisone was found to enhance the efficacy of antidepressants and to improve memory and executive functions in young depressed patients. In conclusion, CORT coordinates via MR the networks underlying how an individual copes with stress, and this action is complemented by the widely distributed lower affinity glucocorticoid receptor (GR) involved in the subsequent management of stress adaptation. In this MR:GR regulation, the MR is an important target for promoting resilience.
Collapse
MESH Headings
- Adaptation, Psychological
- Animals
- Antidepressive Agents/therapeutic use
- Brain/metabolism
- Brain/physiopathology
- Corticosterone/metabolism
- Corticosterone/physiology
- Depression/metabolism
- Depression/physiopathology
- Fludrocortisone/therapeutic use
- Humans
- Polymorphism, Single Nucleotide
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/physiology
- Receptors, Mineralocorticoid/agonists
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, Mineralocorticoid/physiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- E R de Kloet
- Division of Internal Medicine, Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - C Otte
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - R Kumsta
- Genetic Psychology, Fakultät für Psychologie, Ruhr-Universität Bochum, Bochum, Germany
| | - L Kok
- Department of Anesthesiology and Intensive Care, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M H J Hillegers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Hasselmann
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - D Kliegel
- Department of Biological und Clinical Psychology, University of Trier, Trier, Germany
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Wolf OT, Atsak P, de Quervain DJ, Roozendaal B, Wingenfeld K. Stress and Memory: A Selective Review on Recent Developments in the Understanding of Stress Hormone Effects on Memory and Their Clinical Relevance. J Neuroendocrinol 2016; 28. [PMID: 26708929 DOI: 10.1111/jne.12353] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023]
Abstract
Stress causes a neuroendocrine response cascade, leading to the release of catecholamines and glucocorticoids (GCs). GCs influence learning and memory by acting on mineralocorticoid (MR) and glucocorticoid (GR) receptors. Typically, GCs enhance the consolidation of memory processing at the same time as impairing the retrieval of memory of emotionally arousing experiences. The present selective review addresses four recent developments in this area. First, the role of the endocannabinoid system in mediating the rapid, nongenomic effects of GCs on memory is illustrated in rodents. Subsequently, studies on the impact of the selective stimulation of MRs on different memory processes in humans are summarised. Next, a series of human experiments on the impact of stress or GC treatment on fear extinction and fear reconsolidation is presented. Finally, the clinical relevance of the effects of exogenous GC administration is highlighted by the description of patients with anxiety disorders who demonstrate an enhancement of extinction-based therapies by GC treatment. The review highlights the substantial progress made in our mechanistic understanding of the memory-modulating properties of GCs, as well as their clinical potential.
Collapse
Affiliation(s)
- O T Wolf
- Department of Cognitive Psychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - P Atsak
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - D J de Quervain
- Division of Cognitive Neuroscience, Faculty of Medicine, Department of Psychology, University Psychiatric Clinics Basel, Basel, Switzerland
| | - B Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - K Wingenfeld
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
22
|
Cognitive Adaptation under Stress: A Case for the Mineralocorticoid Receptor. Trends Cogn Sci 2016; 20:192-203. [DOI: 10.1016/j.tics.2015.12.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 12/20/2022]
|
23
|
Schultebraucks K, Wingenfeld K, Otte C, Quinkler M. The Role of Fludrocortisone in Cognition and Mood in Patients with Primary Adrenal Insufficiency (Addison's Disease). Neuroendocrinology 2016; 103:315-20. [PMID: 26227663 DOI: 10.1159/000438791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Primary adrenal insufficiency (AI) requires hormone replacement therapy with fludrocortisone and hydrocortisone stimulating glucocorticoid (GR) and mineralocorticoid receptors (MR). Evidence from animal and human studies shows that MR function is crucial for cognitive function and mood. Regarding patients with AI, very little is known about the role of MR in cognitive function and mood. METHODS A repeated-measures within-subject design was used to determine whether cognitive function and mood are related to MR occupation in patients with AI. Intraindividually, patients were examined twice, with 1 week between testing days: once with fludrocortisone (high MR occupation) and once without fludrocortisone (low MR occupation). All patients kept their stable regimen of hydrocortisone. The assessment of cognitive function included executive function, attention, and verbal, visuospatial and working memory. Additionally, mood and blood pressure were measured. RESULTS Verbal memory improved significantly during high MR occupation (after fludrocortisone intake) compared to low MR occupation [without fludrocortisone, t(29) = -2.1, p = 0.046]. There were trend level differences in the Number-Combination test [t(29) = -1.9, p = 0.074] and in the Stroop interference task [t(29) = -1.9, p = 0.068]. No significant differences in visuospatial and working memory were found. Furthermore, the current mood state was better during high MR occupation compared to low MR occupation [t(29) = -2.4, p = 0.023] as was diastolic blood pressure [F(2, 29) = 3.6, p = 0.07]. CONCLUSIONS Cognitive function and mood in patients with AI depend in part on MR occupation. Because the medium effect size indicates a potential clinical significance, further studies should systematically examine which dosages of fludrocortisone are associated with optimal cognitive function and mood in AI patients.
Collapse
Affiliation(s)
- Katharina Schultebraucks
- Department of Psychiatry and Psychotherapy, Charitx00E9; University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | |
Collapse
|
24
|
Gesmundo I, Villanova T, Gargantini E, Arvat E, Ghigo E, Granata R. The Mineralocorticoid Agonist Fludrocortisone Promotes Survival and Proliferation of Adult Hippocampal Progenitors. Front Endocrinol (Lausanne) 2016; 7:66. [PMID: 27379018 PMCID: PMC4910464 DOI: 10.3389/fendo.2016.00066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid receptor (GR) activation has been shown to reduce adult hippocampal progenitor cell proliferation and neurogenesis. By contrast, mineralocorticoid receptor (MR) signaling is associated with neuronal survival in the dentate gyrus of the hippocampus, and impairment of hippocampal MR has been linked to pathological conditions, such as depression or neurodegenerative disorders. Here, we aimed to further clarify the protective role of MR in adult hippocampal neurons by studying the survival and proliferative effects of the highly potent MR agonist fludrocortisone (Fludro) in adult rat hippocampal progenitor cells (AHPs), along with the associated signaling mechanisms. Fludro, which upregulated MR but not GR expression, increased survival and proliferation and prevented apoptosis in AHPs cultured in growth factor-deprived medium. These effects were blunted by the MR antagonist spironolactone and by high doses of the GR agonist dexamethasone. Moreover, they involved signaling through cAMP/protein kinase A (PKA)/cAMP response element-binding protein, phosphoinositide 3-kinase (PI3K)/Akt and its downstream targets glycogen synthase kinase-3β (GSK-3β) and mammalian target of rapamycin. Furthermore, Fludro attenuated the detrimental effects of amyloid-β peptide 1-42 (Aβ1-42) on cell survival, proliferation, and apoptosis in AHPs, and increased the phosphorylation of both PI3K/Akt and GSK-3β, which was reduced by Aβ1-42. Finally, Fludro blocked Aβ1-42-induced hyperphosphorylation of Tau protein, which is a main feature of Alzheimer's disease. Overall, these results are the first to show the protective and proliferative role of Fludro in AHPs, suggesting the potential therapeutic importance of targeting MR for increasing hippocampal neurogenesis and for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Laboratory of Molecular and Cellular Endocrinology, Department of Medical Sciences, University of Torino, Torino, Italy
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, Torino, Italy
| | - Tania Villanova
- Laboratory of Molecular and Cellular Endocrinology, Department of Medical Sciences, University of Torino, Torino, Italy
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, Torino, Italy
| | - Eleonora Gargantini
- Laboratory of Molecular and Cellular Endocrinology, Department of Medical Sciences, University of Torino, Torino, Italy
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, Torino, Italy
| | - Emanuela Arvat
- Department of Medical Sciences, Division of Oncological Endocrinology, University of Torino, Torino, Italy
| | - Ezio Ghigo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, Torino, Italy
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, Department of Medical Sciences, University of Torino, Torino, Italy
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, Torino, Italy
- *Correspondence: Riccarda Granata,
| |
Collapse
|
25
|
Otte C, Wingenfeld K, Kuehl LK, Richter S, Regen F, Piber D, Hinkelmann K. Cognitive function in older adults with major depression: Effects of mineralocorticoid receptor stimulation. J Psychiatr Res 2015; 69:120-5. [PMID: 26343603 DOI: 10.1016/j.jpsychires.2015.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
Memory and executive function are often impaired in older adults with major depression. Mineralocorticoid receptors (MR) are abundantly expressed in the hippocampus and in the prefrontal cortex, brain areas critical for memory and executive function. In both aging and depression, MR expression in the brain is reduced. Therefore, diminished MR function could contribute to impaired cognition in older adults with depression and might be a promising target for pharmacological intervention. Twenty-three older adults with major depression (mean age 61.6 yrs ± 8.1, n = 13 women) without medication and 24 age-, sex- and education-matched healthy participants received the MR-agonist fludrocortisone (0.4 mg) or placebo in a randomized, double-blind, within-subject cross-over design. We measured psychomotor speed, executive function, verbal learning and memory, and visuospatial memory. Compared to controls, depressed patients performed worse in psychomotor speed (group effect p = 0.01), executive function (group effect p < 0.01), verbal learning (group effect p = 0.02), and verbal memory (group effect p < 0.01) but not in visuospatial memory. There were no significant treatment effects. However, we found a group × treatment interaction in verbal learning (p = 0.04) and visuospatial memory (p = 0.02) indicating that depressed patients performed worse after fludrocortisone whereas controls performed better after fludrocortisone. Our data suggest that -in contrast to younger depressed patients-older adults with depression do not benefit from MR stimulation but deteriorate in cognitive function.
Collapse
Affiliation(s)
- Christian Otte
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany.
| | - Katja Wingenfeld
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | - Linn K Kuehl
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | - Steffen Richter
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | - Francesca Regen
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | - Dominique Piber
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| | - Kim Hinkelmann
- Department of Psychosomatic Medicine, Charité University Medical Center, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
26
|
Modulation of Immunity and Inflammation by the Mineralocorticoid Receptor and Aldosterone. BIOMED RESEARCH INTERNATIONAL 2015; 2015:652738. [PMID: 26448944 PMCID: PMC4581510 DOI: 10.1155/2015/652738] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/07/2015] [Accepted: 06/03/2015] [Indexed: 02/07/2023]
Abstract
The mineralocorticoid receptor (MR) is a ligand dependent transcription factor. MR has been traditionally associated with the control of water and electrolyte homeostasis in order to keep blood pressure through aldosterone activation. However, there is growing evidence indicating that MR expression is not restricted to vascular and renal tissues, as it can be also expressed by cells of the immune system, where it responds to stimulation or antagonism, controlling immune cell function. On the other hand, aldosterone also has been associated with proinflammatory immune effects, such as the release of proinflammatory cytokines, generating oxidative stress and inducing fibrosis. The inflammatory participation of MR and aldosterone in the cardiovascular disease suggests an association with alterations in the immune system. Hypertensive patients show higher levels of proinflammatory mediators that can be modulated by MR antagonism. Although these proinflammatory properties have been observed in other autoimmune and chronic inflammatory diseases, the cellular and molecular mechanisms that mediate these effects remain unknown. Here we review and discuss the scientific work aimed at determining the immunological role of MR and aldosterone in humans, as well as animal models.
Collapse
|
27
|
Effects of mineralocorticoid receptor stimulation via fludrocortisone on memory in women with borderline personality disorder. Neurobiol Learn Mem 2015; 120:94-100. [DOI: 10.1016/j.nlm.2015.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/09/2015] [Accepted: 02/21/2015] [Indexed: 01/11/2023]
|
28
|
Fleischer J, Wingenfeld K, Kuehl LK, Hinkelmann K, Roepke S, Otte C. Does fludrocortisone influence autobiographical memory retrieval? A study in patients with major depression, patients with borderline personality disorder and healthy controls. Stress 2015; 18:718-22. [PMID: 26457343 DOI: 10.3109/10253890.2015.1087504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
There is evidence that stimulation of mineralocorticoid receptors (MR) enhances memory in healthy subjects and in patients with major depression (MDD). In contrast, in patients with borderline personality disorder (BPD), this effect seems to be task dependent. The aim of this study was to investigate the effect of MR stimulation on autobiographical memory retrieval in healthy individuals, patients with MDD, and patients with BPD. We conducted a placebo-controlled study in an intra-individual cross-over design. Twenty-four patients with MDD, 37 patients with BPD, and 67 healthy participants completed an autobiographical memory test after receiving 0.4 mg fludrocortisone, a mineralocorticoid receptor preferring agonist, or placebo in a randomized order. Healthy subjects, patients with MDD, and patients with BPD did not differ in their autobiographical memory retrieval. Furthermore, the administration of fludrocortisone had no effect on autobiographical memory. In conclusion, the stimulation of MR does not influence autobiographical memory retrieval in healthy subjects, patients with MDD, and patients with BPD. Our results do not support a role of MR in autobiographical memory.
Collapse
Affiliation(s)
- Juliane Fleischer
- a Department of Psychiatry , Charité University Berlin, Campus Benjamin Franklin , Berlin , Germany
| | - Katja Wingenfeld
- a Department of Psychiatry , Charité University Berlin, Campus Benjamin Franklin , Berlin , Germany
| | - Linn K Kuehl
- a Department of Psychiatry , Charité University Berlin, Campus Benjamin Franklin , Berlin , Germany
| | - Kim Hinkelmann
- a Department of Psychiatry , Charité University Berlin, Campus Benjamin Franklin , Berlin , Germany
| | - Stefan Roepke
- a Department of Psychiatry , Charité University Berlin, Campus Benjamin Franklin , Berlin , Germany
| | - Christian Otte
- a Department of Psychiatry , Charité University Berlin, Campus Benjamin Franklin , Berlin , Germany
| |
Collapse
|