1
|
Gooijers J, Pauwels L, Hehl M, Seer C, Cuypers K, Swinnen SP. Aging, brain plasticity, and motor learning. Ageing Res Rev 2024; 102:102569. [PMID: 39486523 DOI: 10.1016/j.arr.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Motor skill learning, the process of acquiring new motor skills, is critically important across the lifespan, from early development through adulthood and into older age, as well as in pathological conditions (i.e., rehabilitation). Extensive research has demonstrated that motor skill acquisition in young adults is accompanied by significant neuroplastic changes, including alterations in brain structure (gray and white matter), function (i.e., activity and connectivity), and neurochemistry (i.e., levels of neurotransmitters). In the aging population, motor performance typically declines, characterized by slower and less accurate movements. However, despite these age-related changes, older adults maintain the capacity for skill improvement through training. In this review, we explore the extent to which the aging brain retains the ability to adapt in response to motor learning, specifically whether skill acquisition is accompanied by neural changes. Furthermore, we discuss the associations between inter-individual variability in brain structure and function and the potential for future learning in older adults. Finally, we consider the use of non-invasive brain stimulation techniques aimed at optimizing motor learning in this population. Our review provides insights into the neurobiological underpinnings of motor learning in older adults and emphasizes strategies to enhance their motor skill acquisition.
Collapse
Affiliation(s)
- Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Lisa Pauwels
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Melina Hehl
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Caroline Seer
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Rasooli A, Chalavi S, Li H, Seer C, Adab HZ, Mantini D, Sunaert S, Mikkelsen M, Edden RAE, Swinnen SP. Neural correlates of transfer of learning in motor coordination tasks: role of inhibitory and excitatory neurometabolites. Sci Rep 2024; 14:3251. [PMID: 38331950 PMCID: PMC10853253 DOI: 10.1038/s41598-024-53901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
We aimed to investigate transfer of learning, whereby previously acquired skills impact new task learning. While it has been debated whether such transfer may yield positive, negative, or no effects on performance, very little is known about the underlying neural mechanisms, especially concerning the role of inhibitory (GABA) and excitatory (Glu) (measured as Glu + glutamine (Glx)) neurometabolites, as measured by magnetic resonance spectroscopy (MRS). Participants practiced a bimanual coordination task across four days. The Experimental group trained a task variant with the right hand moving faster than the left (Task A) for three days and then switched to the opposite variant (Task B) on Day4. The control group trained Task B across four days. MRS data were collected before, during, and after task performance on Day4 in the somatosensory (S1) and visual (MT/V5) cortex. Results showed that both groups improved performance consistently across three days. On Day4, the Experimental group experienced performance decline due to negative task transfer while the control group continuously improved. GABA and Glx concentrations obtained during task performance showed no significant group-level changes. However, individual Glx levels during task performance correlated with better (less negative) transfer performance. These findings provide a first window into the neurochemical mechanisms underlying task transfer.
Collapse
Affiliation(s)
- Amirhossein Rasooli
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Hong Li
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Caroline Seer
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, KU Leuven, Tervuurse Vest 101, Building De Nayer, Room 02.11, 3001, Leuven, Belgium.
| |
Collapse
|
3
|
de Rond V, D'Cruz N, Hulzinga F, McCrum C, Verschueren S, de Xivry JJO, Nieuwboer A. Neural correlates of weight-shift training in older adults: a randomized controlled study. Sci Rep 2023; 13:19609. [PMID: 37949995 PMCID: PMC10638445 DOI: 10.1038/s41598-023-46645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Mediolateral weight-shifting is an important aspect of postural control. As it is currently unknown whether a short training session of mediolateral weight-shifting in a virtual reality (VR) environment can improve weight-shifting, we investigated this question and also probed the impact of practice on brain activity. Forty healthy older adults were randomly allocated to a training (EXP, n = 20, age = 70.80 (65-77), 9 females) or a control group (CTR, n = 20, age = 71.65 (65-82), 10 females). The EXP performed a 25-min weight-shift training in a VR-game, whereas the CTR rested for the same period. Weight-shifting speed in both single- (ST) and dual-task (DT) conditions was determined before, directly after, and 24 h after intervention. Functional Near-Infrared Spectroscopy (fNIRS) assessed the oxygenated hemoglobin (HbO2) levels in five cortical regions of interest. Weight-shifting in both ST and DT conditions improved in EXP but not in CTR, and these gains were retained after 24 h. Effects transferred to wider limits of stability post-training in EXP versus CTR. HbO2 levels in the left supplementary motor area were significantly increased directly after training in EXP during ST (change < SEM), and in the left somatosensory cortex during DT (change > SEM). We interpret these changes in the motor coordination and sensorimotor integration areas of the cortex as possibly learning-related.
Collapse
Affiliation(s)
- Veerle de Rond
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Nicholas D'Cruz
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Motor Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Femke Hulzinga
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Christopher McCrum
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Sabine Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- Motor Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute (LBI), Leuven, Belgium.
| |
Collapse
|
4
|
Sheoran S, Vints WAJ, Valatkevičienė K, Kušleikienė S, Gleiznienė R, Česnaitienė VJ, Himmelreich U, Levin O, Masiulis N. Strength gains after 12 weeks of resistance training correlate with neurochemical markers of brain health in older adults: a randomized control 1H-MRS study. GeroScience 2023:10.1007/s11357-023-00732-6. [PMID: 36701005 PMCID: PMC9877502 DOI: 10.1007/s11357-023-00732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Physical exercise is considered a potent countermeasure against various age-associated physiological deterioration processes. We therefore assessed the effect of 12 weeks of resistance training on brain metabolism in older adults (age range: 60-80 years). Participants either underwent two times weekly resistance training program which consisted of four lower body exercises performed for 3 sets of 6-10 repetitions at 70-85% of 1 repetition maximum (n = 20) or served as the passive control group (n = 21). The study used proton magnetic resonance spectroscopy to quantify the ratio of total N-acetyl aspartate, total choline, glutamate-glutamine complex, and myo-inositol relative to total creatine (tNAA/tCr, tCho/tCr, Glx/tCr, and mIns/tCr respectively) in the hippocampus (HPC), sensorimotor (SM1), and prefrontal (dlPFC) cortices. The peak torque (PT at 60°/s) of knee extension and flexion was assessed using an isokinetic dynamometer. We used repeated measures time × group ANOVA to assess time and group differences and correlation coefficient analyses to examine the pre-to-post change (∆) associations between PT and neurometabolite variables. The control group showed significant declines in tNAA/tCr and Glx/tCr of SM1, and tNAA/tCr of dlPFC after 12 weeks, which were not seen in the experimental group. A significant positive correlation was found between ∆PT knee extension and ∆SM1 Glx/tCr, ∆dlPFC Glx/tCr and between ∆PT knee flexion and ∆dlPFC mIns/tCr in the experimental group. Overall, findings suggest that resistance training seems to elicit alterations in various neurometabolites that correspond to exercise-induced "preservation" of brain health, while simultaneously having its beneficial effect on augmenting muscle functional characteristics in older adults.
Collapse
Affiliation(s)
- Samrat Sheoran
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, AB T6G 2R3 Edmonton, Canada
| | - Wouter A. J. Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Simona Kušleikienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Rymantė Gleiznienė
- Department of Radiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vida J. Česnaitienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Group Biomedical Sciences, Biomedical MRI Unit, Catholic University Leuven, 3000 Leuven, Belgium
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, 3001 Heverlee, Belgium
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Department of Rehabilitation, Physical and Sports Medicine, Faculty of Medicine, Institute of Health Science, Vilnius University, 03101 Vilnius, Lithuania
| |
Collapse
|
5
|
Dai X, Wu L, Han Z, Li H. Cognitive Training Effect and Imaging Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:171-183. [PMID: 37418214 DOI: 10.1007/978-981-99-1627-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cognitive intervention is a specific form of non-pharmacological intervention used to combat cognitive dysfunction. In this chapter, behavioral and neuroimaging studies about cognitive interventions are introduced. Regarding intervention studies, the form of intervention and the effects of the interventions have been systematically sorted out. In addition, we compared the effects of different intervention approaches, which help people with different cognitive states to choose appropriate intervention programs. With the development of imaging technology, many studies have discussed the neural mechanism of cognitive intervention training and the effects of cognitive intervention from the perspective of neuroplasticity. Behavioral studies and neural mechanism studies are used to improve the understanding of cognitive interventions for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Xiangwei Dai
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Lingli Wu
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - He Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
Van Ruitenbeek P, Santos Monteiro T, Chalavi S, King BR, Cuypers K, Sunaert S, Peeters R, Swinnen SP. Interactions between the aging brain and motor task complexity across the lifespan: balancing brain activity resource demand and supply. Cereb Cortex 2022; 33:6420-6434. [PMID: 36587289 PMCID: PMC10183738 DOI: 10.1093/cercor/bhac514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 01/02/2023] Open
Abstract
The Compensation Related Utilization of Neural Circuits Hypothesis (CRUNCH) proposes a framework for understanding task-related brain activity changes as a function of healthy aging and task complexity. Specifically, it affords the following predictions: (i) all adult age groups display more brain activation with increases in task complexity, (ii) older adults show more brain activation compared with younger adults at low task complexity levels, and (iii) disproportionately increase brain activation with increased task complexity, but (iv) show smaller (or no) increases in brain activation at the highest complexity levels. To test these hypotheses, performance on a bimanual tracking task at 4 complexity levels and associated brain activation were assessed in 3 age groups (20-40, 40-60, and 60-80 years, n = 99). All age groups showed decreased tracking accuracy and increased brain activation with increased task complexity, with larger performance decrements and activation increases in the older age groups. Older adults exhibited increased brain activation at a lower complexity level, but not the predicted failure to further increase brain activity at the highest complexity level. We conclude that older adults show more brain activation than younger adults and preserve the capacity to deploy increased neural resources as a function of task demand.
Collapse
Affiliation(s)
- P Van Ruitenbeek
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - T Santos Monteiro
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - S Chalavi
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - B R King
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Department of Health & Kinesiology; University of Utah, 250 South 1850 East, Salt Lake City, Utah 84112
| | - K Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Agoralaan Gebouw A, 3590,Diepenbeek, Belgium
| | - S Sunaert
- KU Leuven, Department of Imaging and Pathology, Biomedical Sciences, UZ Herestraat 49, box 7003, 3000, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| | - R Peeters
- KU Leuven, Department of Imaging and Pathology, Biomedical Sciences, UZ Herestraat 49, box 7003, 3000, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| | - S P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences,Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| |
Collapse
|
7
|
Seer C, Adab HZ, Sidlauskaite J, Dhollander T, Chalavi S, Gooijers J, Sunaert S, Swinnen SP. Bridging cognition and action: executive functioning mediates the relationship between white matter fiber density and complex motor abilities in older adults. Aging (Albany NY) 2022; 14:7263-7281. [PMID: 35997651 PMCID: PMC9550248 DOI: 10.18632/aging.204237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Aging may be associated with motor decline that is attributed to deteriorating white matter microstructure of the corpus callosum (CC), among other brain-related factors. Similar to motor functioning, executive functioning (EF) typically declines during aging, with age-associated changes in EF likewise being linked to altered white matter connectivity in the CC. Given that both motor and executive functions rely on white matter connectivity via the CC, and that bimanual control is thought to rely on EF, the question arises whether EF can at least party account for the proposed link between CC-connectivity and motor control in older adults. To address this, diffusion magnetic resonance imaging data were obtained from 84 older adults. A fiber-specific approach was used to obtain fiber density (FD), fiber cross-section (FC), and a combination of both metrics in eight transcallosal white matter tracts. Motor control was assessed using a bimanual coordination task. EF was determined by a domain-general latent EF-factor extracted from multiple EF tasks, based on a comprehensive test battery. FD of transcallosal prefrontal fibers was associated with cognitive and motor performance. EF partly accounted for the relationship between FD of prefrontal transcallosal pathways and motor control. Our results underscore the multidimensional interrelations between callosal white matter connectivity (especially in prefrontal brain regions), EF across multiple domains, and motor control in the older population. They also highlight the importance of considering EF when investigating brain-motor behavior associations in older adults.
Collapse
Affiliation(s)
- Caroline Seer
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Justina Sidlauskaite
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | | | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven and University Hospital Leuven (UZ Leuven), Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Network-specific differences in transient brain activity at rest are associated with age-related reductions in motor performance. Neuroimage 2022; 252:119025. [PMID: 35202812 DOI: 10.1016/j.neuroimage.2022.119025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/20/2022] Open
Abstract
Multiple functional changes occur in the brain with increasing age. Among those, older adults typically display more restricted fluctuations of brain activity, both during resting-state and task execution. These altered dynamic patterns have been linked to reduced task performance across multiple behavioral domains. Windowed functional connectivity, which is typically employed in the study of connectivity dynamics, however, might not be able to properly characterize moment-to-moment variations of individual networks. In the present study, we used innovation-driven co-activation patterns (ICAP) to overcome this limitation and investigate the length (duration) and frequency (innovation) in which various brain networks emerged across the adult lifespan (N= 92) during a resting-state period. We identified a link between increasing age and a tendency to engage brain areas with distinct functional associations simultaneously as a single network. The emergence of isolated and spatially well-defined visual, motor, frontoparietal, and posterior networks decreased with increased age. This reduction in dynamics of specialized networks mediated age-related performance decreases (i.e., increases in interlimb interference) in a bimanual motor task. Altogether, our findings demonstrated that older compared to younger adults tend to activate fewer network configurations, which include multiple functionally distinct brain areas. The reduction in independent emergence of functionally well-defined and task-relevant networks may reflect an expression of brain dedifferentiation and is likely associated with functional modulatory deficits, negatively impacting motor behavior.
Collapse
|
9
|
Zapparoli L, Mariano M, Paulesu E. How the motor system copes with aging: a quantitative meta-analysis of the effect of aging on motor function control. Commun Biol 2022; 5:79. [PMID: 35058549 PMCID: PMC8776875 DOI: 10.1038/s42003-022-03027-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/27/2021] [Indexed: 01/28/2023] Open
Abstract
Motor cognitive functions and their neurophysiology evolve and degrade along the lifespan in a dramatic fashion. Current models of how the brain adapts to aging remain inspired primarily by studies on memory or language processes. Yet, aging is strongly associated with reduced motor independence and the associated degraded interaction with the environment: accordingly, any neurocognitive model of aging not considering the motor system is, ipso facto, incomplete. Here we present a meta-analysis of forty functional brain-imaging studies to address aging effects on motor control. Our results indicate that motor control is associated with aging-related changes in brain activity, involving not only motoric brain regions but also posterior areas such as the occipito-temporal cortex. Notably, some of these differences depend on the specific nature of the motor task and the level of performance achieved by the participants. These findings support neurocognitive models of aging that make fewer anatomical assumptions while also considering tasks-dependent and performance-dependent manifestations. Besides the theoretical implications, the present data also provide additional information for the motor rehabilitation domain, indicating that motor control is a more complex phenomenon than previously understood, to which separate cognitive operations can contribute and decrease in different ways with aging. Many aspects of neuronal control degrade with ageing, including motor control. Using a meta-analysis of functional MRI images, it is made apparent that the ageing brain relies more on visual strategies than sensory stimuli to maintain motor function.
Collapse
|
10
|
Gatica M, Cofré R, Mediano PAM, Rosas FE, Orio P, Diez I, Swinnen SP, Cortes JM. High-Order Interdependencies in the Aging Brain. Brain Connect 2021; 11:734-744. [PMID: 33858199 DOI: 10.1089/brain.2020.0982] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Brain interdependencies can be studied from either a structural/anatomical perspective ("structural connectivity") or by considering statistical interdependencies ("functional connectivity" [FC]). Interestingly, while structural connectivity is by definition pairwise (white-matter fibers project from one region to another), FC is not. However, most FC analyses only focus on pairwise statistics and they neglect higher order interactions. A promising tool to study high-order interdependencies is the recently proposed O-Information, which can quantify the intrinsic statistical synergy and the redundancy in groups of three or more interacting variables. Methods: We analyzed functional magnetic resonance imaging (fMRI) data obtained at rest from 164 healthy subjects with ages ranging in 10 to 80 years and used O-Information to investigate how high-order statistical interdependencies are affected by age. Results: Older participants (from 60 to 80 years old) exhibited a higher predominance of redundant dependencies compared with younger participants, an effect that seems to be pervasive as it is evident for all orders of interaction. In addition, while there is strong heterogeneity across brain regions, we found a "redundancy core" constituted by the prefrontal and motor cortices in which redundancy was evident at all the interaction orders studied. Discussion: High-order interdependencies in fMRI data reveal a dominant redundancy in functions such as working memory, executive, and motor functions. Our methodology can be used for a broad range of applications, and the corresponding code is freely available. Impact statement Past research has showcased multiple changes to the brain's structural and functional properties caused by aging. Here we expand prior work through recent advancements in multivariate information theory, which provide richer and more theoretically principled analyses than existing alternatives. We show that the brains of older participants contain more redundant information at multiple spatial scales-that is, activation in different brain regions is less diverse, compared with younger participants-and identify a "redundancy core" constituted by prefrontal and motor cortices, which might explained impaired performance in the old population in functions such as working memory and executive control.
Collapse
Affiliation(s)
- Marilyn Gatica
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rodrigo Cofré
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
- Data Science Institute, Imperial College London, London, United Kingdom
- Centre for Complexity Science, Imperial College London, London, United Kingdom
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ibai Diez
- Department of Radiology, Gordon Center for Medical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
- Neurology Department, Harvard Medical School, Boston, Massachusetts, USA
- Neurotechnology Laboratory, Tecnalia Health Department, Derio, Spain
| | - Stephan P Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jesus M Cortes
- Computational Neuroimaging Lab, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
11
|
|
12
|
Increased prefrontal top-down control in older adults predicts motor performance and age-group association. Neuroimage 2021; 240:118383. [PMID: 34252525 DOI: 10.1016/j.neuroimage.2021.118383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Bimanual motor control declines during ageing, affecting the ability of older adults to maintain independence. An important underlying factor is cortical atrophy, particularly affecting frontal and parietal areas in older adults. As these regions and their interplay are highly involved in bimanual motor preparation, we investigated age-related connectivity changes between prefrontal and premotor areas of young and older adults during the preparatory phase of complex bimanual movements using high-density electroencephalography. Generative modelling showed that excitatory inter-hemispheric prefrontal to premotor coupling in older adults predicted age-group affiliation and was associated with poor motor-performance. In contrast, excitatory intra-hemispheric prefrontal to premotor coupling enabled older adults to maintain motor-performance at the cost of lower movement speed. Our results disentangle the complex interplay in the prefrontal-premotor network during movement preparation underlying reduced bimanual control and the well-known speed-accuracy trade-off seen in older adults.
Collapse
|
13
|
Verstraelen S, van Dun K, Depestele S, Van Hoornweder S, Jamil A, Ghasemian-Shirvan E, Nitsche MA, Van Malderen S, Swinnen SP, Cuypers K, Meesen RLJ. Dissociating the causal role of left and right dorsal premotor cortices in planning and executing bimanual movements - A neuro-navigated rTMS study. Brain Stimul 2021; 14:423-434. [PMID: 33621675 DOI: 10.1016/j.brs.2021.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/13/2021] [Accepted: 02/11/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The dorsal premotor cortex (PMd) is a key region in bimanual coordination. However, causal evidence linking PMd functionality during motor planning and execution to movement quality is lacking. OBJECTIVE We investigated how left (PMdL) and right PMd (PMdR) are causally involved in planning and executing bimanual movements, using short-train repetitive transcranial magnetic stimulation (rTMS). Additionally, we explored to what extent the observed rTMS-induced modulation of performance could be explained by rTMS-induced modulation of PMd-M1 interhemispheric interactions (IHI). METHODS Twenty healthy adults (mean age ± SD = 22.85 ± 3.73 years) participated in two sessions, in which either PMdL or PMdR was targeted with rTMS (10 Hz) in a pseudo-randomized design. PMd functionality was transiently modulated during the planning or execution of a complex bimanual task, whereby the participant was asked to track a moving dot by controlling two dials. The effect of rTMS on several performance measures was investigated. Concurrently, rTMS-induced modulation of PMd-M1 IHI was measured using a dual-coil paradigm, and associated with the rTMS-induced performance modulation. RESULTS rTMS over PMdL during planning increased bilateral hand movement speed (p = 0.03), thereby improving movement accuracy (p = 0.02). In contrast, rTMS over PMdR during both planning and execution induced deterioration of movement stability (p = 0.04). rTMS-induced modulation of PMd-M1 IHI during planning did not predict rTMS-induced performance modulation. CONCLUSION The current findings support the growing evidence on PMdL dominance during motor planning, as PMdL was crucially involved in planning the speed of each hand, subserving bimanual coordination accuracy. Moreover, the current results suggest that PMdR fulfills a role in continuous adjustment processes of movement.
Collapse
Affiliation(s)
- Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.
| | - Kim van Dun
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Siel Depestele
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Sybren Van Hoornweder
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Asif Jamil
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium; Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Ensiyeh Ghasemian-Shirvan
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Shanti Van Malderen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Raf L J Meesen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Maes C, Cuypers K, Heise KF, Edden RAE, Gooijers J, Swinnen SP. GABA levels are differentially associated with bimanual motor performance in older as compared to young adults. Neuroimage 2021; 231:117871. [PMID: 33607278 PMCID: PMC8275071 DOI: 10.1016/j.neuroimage.2021.117871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 01/23/2023] Open
Abstract
Although gamma aminobutyric acid (GABA) is of particular importance for efficient motor functioning, very little is known about the relationship between regional GABA levels and motor performance. Some studies suggest this relation to be subject to age-related differences even though literature is scarce. To clarify this matter, we employed a comprehensive approach and investigated GABA levels within young and older adults across multiple motor tasks as well as multiple brain regions. Specifically, 30 young and 30 older adults completed a task battery of three different bimanual tasks. Furthermore, GABA levels were obtained within bilateral primary sensorimotor cortex (SM1), bilateral dorsal premotor cortex, the supplementary motor area and bilateral dorsolateral prefrontal cortex (DLPFC) using magnetic resonance spectroscopy. Results indicated that older adults, as compared to their younger counterparts, performed worse on all bimanual tasks and exhibited lower GABA levels in bilateral SM1 only. Moreover, GABA levels across the motor network and DLPFC were differentially associated with performance in young as opposed to older adults on a manual dexterity and bimanual coordination task but not a finger tapping task. Specifically, whereas higher GABA levels related to better manual dexterity within older adults, higher GABA levels predicted poorer bimanual coordination performance in young adults. By determining a task-specific and age-dependent association between GABA levels across the cortical motor network and performance on distinct bimanual tasks, the current study advances insights in the role of GABA for motor performance in the context of aging.
Collapse
Affiliation(s)
- Celine Maes
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Tervuursevest 101 box, Leuven 1501 3001, Belgium.
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Tervuursevest 101 box, Leuven 1501 3001, Belgium; REVAL Research Institute, Hasselt University, Diepenbeek, Belgium.
| | - Kirstin-Friederike Heise
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Tervuursevest 101 box, Leuven 1501 3001, Belgium.
| | - Richard A E Edden
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Jolien Gooijers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Tervuursevest 101 box, Leuven 1501 3001, Belgium.
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Tervuursevest 101 box, Leuven 1501 3001, Belgium.
| |
Collapse
|
15
|
Wylie GR, Chiaravalloti ND, Weber E, Genova HM, Dyson-Hudson TA, Wecht JM. The Neural Mechanisms Underlying Processing Speed Deficits in Individuals Who Have Sustained a Spinal Cord Injury: A Pilot Study. Brain Topogr 2020; 33:776-784. [PMID: 32978697 DOI: 10.1007/s10548-020-00798-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Our objective was to determine differences in brain activation during a processing-speed task in individuals with SCI compared to a group of age-matched healthy controls and to a group of older healthy controls. Ten individuals with cervical SCI (C3-C5), 10 age-matched healthy controls and 10 older healthy controls participated in a cross-sectional study in which performance on neuropsychological tests of processing speed and brain activation were the main outcome measures. The brain areas used by the individuals with SCI during the processing-speed task differed significantly from the age-matched healthy controls, but were similar to the older control cohort, and included activation in frontal, parietal and hippocampal areas. This suggests that individuals with SCI may compensate for processing-speed deficits by relying on brain regions that classically support control cognitive processes such as executive control and memory.
Collapse
Affiliation(s)
- Glenn R Wylie
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA.
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, NJ, USA.
- Department of Veterans' Affairs, War Related Illness & Injury Study Center, East Orange, NJ, USA.
| | - Nancy D Chiaravalloti
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, NJ, USA
| | - Erica Weber
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
| | - Helen M Genova
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, NJ, USA
| | - Trevor A Dyson-Hudson
- Kessler Foundation, Rocco Ortenzio Neuroimaging Center, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, NJ, USA
| | - Jill M Wecht
- Department of Veterans' Affairs, RR&D National Center for the Medical Consequences of SCI, James J. Peters VAMC, Bronx, NY, USA
- Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Rehabilitation Medicine, The Icahn School of Medicine, Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Verstraelen S, van Dun K, Duque J, Fujiyama H, Levin O, Swinnen SP, Cuypers K, Meesen RLJ. Induced Suppression of the Left Dorsolateral Prefrontal Cortex Favorably Changes Interhemispheric Communication During Bimanual Coordination in Older Adults-A Neuronavigated rTMS Study. Front Aging Neurosci 2020; 12:149. [PMID: 32547388 PMCID: PMC7272719 DOI: 10.3389/fnagi.2020.00149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Recent transcranial magnetic stimulation (TMS) research indicated that the ability of the dorsolateral prefrontal cortex (DLPFC) to disinhibit the contralateral primary motor cortex (M1) during motor preparation is an important predictor for bimanual motor performance in both young and older healthy adults. However, this DLPFC-M1 disinhibition is reduced in older adults. Here, we transiently suppressed left DLPFC using repetitive TMS (rTMS) during a cyclical bimanual task and investigated the effect of left DLPFC suppression: (1) on the projection from left DLPFC to the contralateral M1; and (2) on motor performance in 21 young (mean age ± SD = 21.57 ± 1.83) and 20 older (mean age ± SD = 69.05 ± 4.48) healthy adults. As predicted, without rTMS, older adults showed compromised DLPFC-M1 disinhibition as compared to younger adults and less preparatory DLPFC-M1 disinhibition was related to less accurate performance, irrespective of age. Notably, rTMS-induced DLPFC suppression restored DLPFC-M1 disinhibition in older adults and improved performance accuracy right after the local suppression in both age groups. However, the rTMS-induced gain in disinhibition was not correlated with the gain in performance. In sum, this novel rTMS approach advanced our mechanistic understanding of how left DLPFC regulates right M1 and allowed us to establish the causal role of left DLPFC in bimanual coordination.
Collapse
Affiliation(s)
- Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Kim van Dun
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hakuei Fujiyama
- Discipline of Psychology, Exercise Science, Chiropractic and Counselling College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Oron Levin
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Raf L J Meesen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Maes C, Swinnen SP, Albouy G, Sunaert S, Gooijers J, Chalavi S, Pauwels L. The role of the PMd in task complexity: functional connectivity is modulated by motor learning and age. Neurobiol Aging 2020; 92:12-27. [PMID: 32339856 DOI: 10.1016/j.neurobiolaging.2020.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022]
Abstract
The dorsal premotor cortex (PMd) plays a key role in the control and learning of motor tasks, especially when task complexity is high. This study sought to investigate the effect of task complexity on PMd-seeded functional connectivity in the context of aging using psychophysiological interaction analyses. Young and older participants were enrolled in a 3-day training protocol whereby task-related functional magnetic resonance imaging data were acquired. During training, movement was either internally generated or externally generated in the absence or presence of online visual feedback, respectively. Behavioral results indicated that older adults tended to have more difficulties with the complex task variants as compared with young adults. On a neural level, older adults demonstrated difficulties in flexibly adjusting their neural resources dependent on the feedback provided. Furthermore, PMd-seeded connectivity was related to a behavioral task complexity index in both age groups, albeit mediated by age. Together, these results highlight the importance of PMd in adaptability to task complexity and its age-related effects.
Collapse
Affiliation(s)
- Celine Maes
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Geneviève Albouy
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven & University Hospital Leuven, Translational MRI & Radiology, Department of Imaging and Pathology, Group Biomedical Sciences, Leuven, Belgium
| | - Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sima Chalavi
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Lisa Pauwels
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
18
|
Roman-Liu D, Mockałło Z. Effectiveness of bimanual coordination tasks performance in improving coordination skills and cognitive functions in elderly. PLoS One 2020; 15:e0228599. [PMID: 32130219 PMCID: PMC7055901 DOI: 10.1371/journal.pone.0228599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/18/2020] [Indexed: 11/18/2022] Open
Abstract
Background The purpose of the study was to determine the impact of the performance of bimanual coordination tasks with specific characteristics on the changes in quality of coordination, musculoskeletal load of the upper limbs and cognitive functions. Methods and findings A group of 26 people aged 60–67 years performed 6 sessions of bimanual coordination training. Each session included set of tasks that varied depending on the shape in which the cursor moved, the coordination mode (in-phase, anti-phase, complex) and the tracking mode (imposed or freely chosen speed). Performance was assessed by: Error, Variability and Execution. The load of upper limb muscles was expressed with the value of the normalized EMG amplitude. Cognitive functions were evaluated using the Vienna Test System. The Variability and Error values obtained during the sixth training session decreased by more than 50% of the initial values. Tasks with freely chosen speed showed changes from 15% to 34% for Error and from 45% to 50% for Variability. For tasks with imposed speed and coordination mode anti-phase or complex it was between 51% and 58% for Error and between 58% and 68% for Variability. Statistically significant differences between load during the sixth training session compared to the first session occurred in three out of four muscles and were between 9% to 39%. There were statistically significant differences in motor time and no differences in variables describing attention and working memory. Conclusions Coordination mode is meaningful for improving coordination skills; tasks in the anti-phase and complex are recommended. Tracking mode also plays a role, tasks with an imposed cursor movement speed have greater potential to improve coordination skills than tasks with freely chosen. Improved control skills resulted in the reduction of upper limb musculoskeletal load. It can be assumed that an increase in coordination skills with the use of appropriate training can help to reduce musculoskeletal load.
Collapse
Affiliation(s)
- Danuta Roman-Liu
- Department of Ergonomics, Central Institute for Labour Protection—National Research Institute (CIOP-PIB), Warsaw, Poland
- * E-mail:
| | - Zofia Mockałło
- Department of Ergonomics, Central Institute for Labour Protection—National Research Institute (CIOP-PIB), Warsaw, Poland
| |
Collapse
|
19
|
Monteiro TS, Zivari Adab H, Chalavi S, Gooijers J, King BBR, Cuypers K, Mantini D, Swinnen SP. Reduced Modulation of Task-Related Connectivity Mediates Age-Related Declines in Bimanual Performance. Cereb Cortex 2020; 30:4346-4360. [PMID: 32133505 DOI: 10.1093/cercor/bhaa021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aging is accompanied by marked changes in motor behavior and its neural correlates. At the behavioral level, age-related declines in motor performance manifest, for example, as a reduced capacity to inhibit interference between hands during bimanual movements, particularly when task complexity increases. At the neural level, aging is associated with reduced differentiation between distinct functional systems. Functional connectivity (FC) dedifferentiation is characterized by more homogeneous connectivity patterns across various tasks or task conditions, reflecting a reduced ability of the aging adult to modulate brain activity according to changing task demands. It is currently unknown, however, how whole-brain dedifferentiation interacts with increasing task complexity. In the present study, we investigated age- and task-related FC in a group of 96 human adults across a wide age range (19.9-74.5 years of age) during the performance of a bimanual coordination task of varying complexity. Our findings indicated stronger task complexity-related differentiation between visuomotor- and nonvisuomotor-related networks, though modulation capability decreased with increasing age. Decreased FC modulation mediated larger complexity-related increases in between-hand interference, reflective of worse bimanual coordination. Thus, the ability to maintain high motor performance levels in older adults is related to the capability to properly segregate and modulate functional networks.
Collapse
Affiliation(s)
- Thiago Santos Monteiro
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Brad Bradley Ross King
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,REVAL Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dante Mantini
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan Patrick Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Zivari Adab H, Chalavi S, Monteiro TS, Gooijers J, Dhollander T, Mantini D, Swinnen SP. Fiber-specific variations in anterior transcallosal white matter structure contribute to age-related differences in motor performance. Neuroimage 2020; 209:116530. [PMID: 31931154 DOI: 10.1016/j.neuroimage.2020.116530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related differences in bimanual motor performance have been extensively documented, but their underlying neural mechanisms remain less clear. Studies applying diffusion MRI in the aging population have revealed evidence for age-related white matter variations in the corpus callosum (CC) which are related to bimanual motor performance. However, the diffusion tensor model used in those studies is confounded by partial volume effects in voxels with complex fiber geometries which are present in up to 90% of white matter voxels, including the bilateral projections of the CC. A recently developed whole-brain analysis framework, known as fixel-based analysis (FBA), enables comprehensive statistical analyses of white matter quantitative measures in the presence of such complex fiber geometries. To investigate the contribution of age-related fiber-specific white matter variations to age-related differences in bimanual performance, a cross-sectional lifespan sample of healthy human adults (N = 95; 20-75 years of age) performed a bimanual tracking task. Furthermore, diffusion MRI data were acquired and the FBA metrics associated with fiber density, cross-section, and combined fiber density and cross-section were estimated. Whole-brain FBA revealed significant negative associations between age and fiber density, cross-section, and combined metrics of multiple white matter tracts, including the bilateral projections of the CC, indicative of white matter micro- and macrostructural degradation with age. More importantly, mediation analyses demonstrated that age-related variations in the combined (fiber density and cross-section) metric of the genu, but not splenium, of the CC contributed to the observed age-related differences in bimanual coordination performance. These findings highlight the contribution of variations in interhemispheric communication between prefrontal (non-motor) cortices to age-related differences in motor performance.
Collapse
Affiliation(s)
- Hamed Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Thiago S Monteiro
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Thijs Dhollander
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
King BR, van Ruitenbeek P, Leunissen I, Cuypers K, Heise KF, Santos Monteiro T, Hermans L, Levin O, Albouy G, Mantini D, Swinnen SP. Age-Related Declines in Motor Performance are Associated With Decreased Segregation of Large-Scale Resting State Brain Networks. Cereb Cortex 2019; 28:4390-4402. [PMID: 29136114 DOI: 10.1093/cercor/bhx297] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022] Open
Abstract
Aging is typically associated with substantial declines in motor functioning as well as robust changes in the functional organization of brain networks. Previous research has investigated the link between these 2 age-varying factors but examinations were predominantly limited to the functional organization within motor-related brain networks. Little is known about the relationship between age-related behavioral impairments and changes in functional organization at the whole brain (i.e., multiple network) level. This knowledge gap is surprising given that the decreased segregation of brain networks (i.e., increased internetwork connectivity) can be considered a hallmark of the aging process. Accordingly, we investigated the association between declines in motor performance across the adult lifespan (20-75 years) and age-related modulations of functional connectivity within and between resting state networks. Results indicated that stronger internetwork resting state connectivity observed as a function of age was significantly related to worse motor performance. Moreover, performance had a significantly stronger association with the strength of internetwork as compared with intranetwork connectivity, including connectivity within motor networks. These findings suggest that age-related declines in motor performance may be attributed to a breakdown in the functional organization of large-scale brain networks rather than simply age-related connectivity changes within motor-related networks.
Collapse
Affiliation(s)
- B R King
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences, Leuven, Belgium
| | - P van Ruitenbeek
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences, Leuven, Belgium.,Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - I Leunissen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences, Leuven, Belgium
| | - K Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences, Leuven, Belgium.,Hasselt University, REVAL Rehabilitation Research Centre, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
| | - K-F Heise
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences, Leuven, Belgium
| | - T Santos Monteiro
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences, Leuven, Belgium
| | - L Hermans
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences, Leuven, Belgium
| | - O Levin
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences, Leuven, Belgium
| | - G Albouy
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences, Leuven, Belgium
| | - D Mantini
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences, Leuven, Belgium.,ETH Zurich, Department of Health Sciences and Technology, Zurich, Switzerland.,Department of Experimental Psychology, Oxford University, Oxford, UK
| | - S P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences, Leuven, Belgium.,KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium
| |
Collapse
|
22
|
Pauwels L, Chalavi S, Swinnen SP. Aging and brain plasticity. Aging (Albany NY) 2019; 10:1789-1790. [PMID: 30067225 PMCID: PMC6128435 DOI: 10.18632/aging.101514] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Lisa Pauwels
- Movement Control and Neuroplasticity Research Group, Faculty of Movement and Rehabilitation Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Faculty of Movement and Rehabilitation Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Faculty of Movement and Rehabilitation Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Levin O, Weerasekera A, King BR, Heise KF, Sima DM, Chalavi S, Maes C, Peeters R, Sunaert S, Cuypers K, Van Huffel S, Mantini D, Himmelreich U, Swinnen SP. Sensorimotor cortex neurometabolite levels as correlate of motor performance in normal aging: evidence from a 1H-MRS study. Neuroimage 2019; 202:116050. [PMID: 31349070 DOI: 10.1016/j.neuroimage.2019.116050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Aging is associated with gradual alterations in the neurochemical characteristics of the brain, which can be assessed in-vivo with proton-magnetic resonance spectroscopy (1H-MRS). However, the impact of these age-related neurochemical changes on functional motor behavior is still poorly understood. Here, we address this knowledge gap and specifically focus on the neurochemical integrity of the left sensorimotor cortex (SM1) and the occipital lobe (OCC), as both regions are main nodes of the visuomotor network underlying bimanual control. 1H-MRS data and performance on a set of bimanual tasks were collected from a lifespan (20-75 years) sample of 86 healthy adults. Results indicated that aging was accompanied by decreased levels of N-acetylaspartate (NAA), glutamate-glutamine (Glx), creatine + phosphocreatine (Cr) and myo-inositol (mI) in both regions, and decreased Choline (Cho) in the OCC region. Lower NAA and Glx levels in the SM1 and lower NAA levels in the OCC were related to poorer performance on a visuomotor bimanual coordination task, suggesting that NAA could serve as a potential biomarker for the integrity of the motor system supporting bimanual control. In addition, lower NAA, Glx, and mI levels in the SM1 were found to be correlates of poorer dexterous performance on a bimanual dexterity task. These findings highlight the role for 1H-MRS to study neurochemical correlates of motor performance across the adult lifespan.
Collapse
Affiliation(s)
- Oron Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium.
| | - Akila Weerasekera
- Biomedical MRI Unit, Department of Imaging & Pathology, Group Biomedical Sciences, KU Leuven, Belgium
| | - Bradley R King
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | - Kirstin F Heise
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | | | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | - Celine Maes
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, UZ Gasthuisberg, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, UZ Gasthuisberg, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, B-3590, Diepenbeek, Belgium
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging & Pathology, Group Biomedical Sciences, KU Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
24
|
Opie GM, Hand BJ, Coxon JP, Ridding MC, Ziemann U, Semmler JG. Visuomotor task acquisition is reduced by priming paired associative stimulation in older adults. Neurobiol Aging 2019; 81:67-76. [PMID: 31247460 DOI: 10.1016/j.neurobiolaging.2019.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Transcranial magnetic stimulation may represent an effective means for improving motor function in the elderly. The aim of this study was therefore to investigate the effects of paired associative stimulation (PAS; a plasticity-inducing transcranial magnetic stimulation paradigm) on acquisition of a novel visuomotor task in young and older adults. Fourteen young (20.4 ± 0.6 years) and 13 older (69.0 ± 1.6 years) adults participated in 3 experimental sessions during which training was preceded (primed) by PAS. Within each session, the interstimulus interval used for PAS was set at either the N20 latency plus 5 ms (PASLTP), the N20 latency minus 10 ms (PASLTD), or a constant 100 ms (PASControl). After training, the level of motor skill was not different between PAS conditions in young subjects (all p-values > 0.2), but was reduced by both PASLTP (p = 0.02) and PASLTD (p = 0.0001) in older subjects. Consequently, priming PAS was detrimental to skill acquisition in older adults, possibly suggesting a need for interventions that are optimized for use in elderly populations.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Discipline of Obstetrics and Gynaecology, Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Brodie J Hand
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - James P Coxon
- School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
| | - Michael C Ridding
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
25
|
Rueda-Delgado LM, Heise KF, Daffertshofer A, Mantini D, Swinnen SP. Age-related differences in neural spectral power during motor learning. Neurobiol Aging 2019; 77:44-57. [DOI: 10.1016/j.neurobiolaging.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/29/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022]
|
26
|
Monteiro TS, King BR, Zivari Adab H, Mantini D, Swinnen SP. Age-related differences in network flexibility and segregation at rest and during motor performance. Neuroimage 2019; 194:93-104. [PMID: 30872046 DOI: 10.1016/j.neuroimage.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Brain networks undergo widespread changes in older age. A large body of knowledge gathered about those changes evidenced an increase of functional connectivity between brain networks. Previous work focused mainly on cortical networks during the resting state. Subcortical structures, however, are of critical importance during the performance of motor tasks. In this study, we investigated age-related changes in cortical, striatal and cerebellar functional connectivity at rest and its modulation by motor task execution. To that end, functional MRI from twenty-five young (mean age 21.5 years) and eighteen older adults (mean age 68.6 years) were analysed during rest and while performing a bimanual tracking task practiced over a two-week period. We found that inter-network connectivity among cortical structures was more positive in older adults both during rest and task performance. Functional connectivity within striatal structures decreased with age during rest and task execution. Network flexibility, the changes in network composition from rest to task, was also reduced in older adults, but only in networks with an age-related increase in connectivity. Finally, flexibility of areas in the prefrontal cortex were associated with lower error scores during task execution, especially in older adults. In conclusion, our findings indicate an age-related reduction in the ability to suppress irrelevant network communication, leading to less segregated and less flexible cortical networks. At the same time, striatal connectivity is impaired in older adults, while cerebellar connectivity shows heterogeneous age-related effects during rest and task execution. Future research is needed to clarify how cortical and subcortical connectivity changes relate to one another.
Collapse
Affiliation(s)
- T S Monteiro
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - B R King
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - H Zivari Adab
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - D Mantini
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Functional Imaging Laboratory, IRCCS San Camillo Hospital Foundation, Venice, Italy.
| | - S P Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Belgium.
| |
Collapse
|
27
|
Mitsuboshi N, Kouzuki M, Mochida S, Morimoto K, Urakami K. How the Post-Fracture Rehabilitation Choice Affects Brain Function in Older People? Dement Geriatr Cogn Dis Extra 2019; 9:34-43. [PMID: 31043962 PMCID: PMC6477489 DOI: 10.1159/000495937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND We investigated how the type of rehabilitation affects brain function and antioxidant potential. METHODS Twenty-eight patients hospitalized for fall-related fractures were assigned to either a physical therapy group or an occupational therapy group. Cognition was assessed using the Touch Panel-type Dementia Assessment Scale (TDAS) and oxidative stress with serum pentosidine levels. Spectral analysis and coherence analysis were also performed. RESULTS Changes in TDAS scores and serum pentosidine levels did not differ significantly between the 2 therapies. Power spectral analysis revealed a significant intergroup difference in δ waves. Coherence analysis showed significant intergroup differences in the activities of δ waves and β waves. CONCLUSIONS Cognitive function and antioxidant potential did not differ between the 2 types of rehabilitation. However, the impact on cerebral neuronal activity may have differed.
Collapse
Affiliation(s)
- Noriko Mitsuboshi
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
- Yukoukai Kaikeonsen Hospital, Yonago, Japan
| | - Minoru Kouzuki
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | - Katsuya Urakami
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
28
|
Berghuis KMM, Fagioli S, Maurits NM, Zijdewind I, Marsman JBC, Hortobágyi T, Koch G, Bozzali M. Age-related changes in brain deactivation but not in activation after motor learning. Neuroimage 2018; 186:358-368. [PMID: 30439511 DOI: 10.1016/j.neuroimage.2018.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/13/2023] Open
Abstract
It is poorly understood how healthy aging affects neural mechanisms underlying motor learning. We used blood-oxygen-level dependent (BOLD) contrasts to examine age-related changes in brain activation after acquisition and consolidation (24 h) of a visuomotor tracking skill. Additionally, structural magnetic resonance imaging and diffusion tensor imaging were used to examine age-related structural changes in the brain. Older adults had reduced gray matter volume (628 ± 57 ml) and mean white matter anisotropy (0.18 ± 0.03) compared with young adults (741 ± 59 ml and 0.22 ± 0.02, respectively). Although motor performance was 53% lower in older (n = 15, mean age 63.1 years) compared with young adults (n = 15, mean age 25.5 years), motor practice improved motor performance similarly in both age groups. While executing the task, older adults showed in general greater brain activation compared with young adults. BOLD activation decreased in parietal and occipital areas after skill acquisition but activation increased in these areas after consolidation in both age groups, indicating more efficient visuospatial processing immediately after skill acquisition. Changes in deactivation in specific areas were age-dependent after consolidating the motor skill into motor memory. Young adults showed greater deactivations from post-test to retention in parietal, occipital and temporal cortices, whereas older adults showed smaller deactivation in the frontal cortex. Since learning rate was similar between age groups, age-related changes in activation patterns may be interpreted as a compensatory mechanism for age-related structural decline.
Collapse
Affiliation(s)
- K M M Berghuis
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands; IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy; IRCCS Santa Lucia Foundation, Non-Invasive Brain Stimulation Unit, Rome, Italy.
| | - S Fagioli
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy; University of Roma Tre, Department of Education, Rome, Italy
| | - N M Maurits
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands
| | - I Zijdewind
- University of Groningen, University Medical Center Groningen, Department of Neuroscience, Groningen, the Netherlands
| | - J B C Marsman
- University of Groningen, University Medical Center Groningen, Cognitive Neuroscience Center, Biomedical Sciences of Cells and Systems, Groningen, the Netherlands
| | - T Hortobágyi
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands
| | - G Koch
- IRCCS Santa Lucia Foundation, Non-Invasive Brain Stimulation Unit, Rome, Italy
| | - M Bozzali
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy; University of Sussex, Brighton & Sussex Medical School, Department of Neuroscience, Brighton, United Kingdom
| |
Collapse
|
29
|
Boisgontier MP, Cheval B, van Ruitenbeek P, Cuypers K, Leunissen I, Sunaert S, Meesen R, Zivari Adab H, Renaud O, Swinnen SP. Cerebellar gray matter explains bimanual coordination performance in children and older adults. Neurobiol Aging 2018; 65:109-120. [DOI: 10.1016/j.neurobiolaging.2018.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/12/2018] [Accepted: 01/21/2018] [Indexed: 02/02/2023]
|
30
|
Challenge to Promote Change: The Neural Basis of the Contextual Interference Effect in Young and Older Adults. J Neurosci 2018; 38:3333-3345. [PMID: 29483284 DOI: 10.1523/jneurosci.2640-17.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 02/03/2023] Open
Abstract
Motor performance deteriorates with age. Hence, studying the effects of different training types on performance improvement is particularly important. Here, we investigated the neural correlates of the contextual interference (CI) effect in 32 young (YA; 16 female) and 28 older (OA; 12 female) human adults. Participants were randomly assigned to either a blocked or a random practice schedule, practiced three variations of a bimanual visuomotor task over 3 d, and were retested 6 d later. Functional magnetic resonance imaging data were acquired during the first and last training days and during retention. Although the overall performance level was lower in OA than YA, the typical CI effects were observed in both age groups, i.e., inferior performance during acquisition but superior performance during retention for random relative to blocked practice. At the neural level, blocked practice showed higher brain activity in motor-related brain regions compared with random practice across both age groups. However, although activity in these regions decreased with blocked practice in both age groups, it was either preserved (YA) or increased (OA) as a function of random practice. In contrast, random compared with blocked practice resulted in greater activations in visual processing regions across age groups. Interestingly, in OA, the more demanding random practice schedule triggered neuroplastic changes in areas of the default mode network, ultimately leading to better long-term retention. Our findings may have substantial implications for the optimization of practice schedules, and rehabilitation settings in particular.SIGNIFICANCE STATEMENT In aging societies, it is critically important to understand how motor skills can be maintained or enhanced in older adults, with the ultimate goal to prolong functional independence. Here, we demonstrated that a more challenging random as opposed to a blocked practice environment temporarily reduced performance during the acquisition phase but resulted in lasting benefits for skill retention. In older adults, learning success was critically dependent on reduction of activation in areas of the default mode network, pointing to plastic functional changes in brain regions that are vulnerable to aging effects. The random practice context led to increased economy of brain activity and better skill retention. This provides new perspectives for reversing the negative consequences of aging.
Collapse
|
31
|
Chalavi S, Pauwels L, Heise KF, Zivari Adab H, Maes C, Puts NAJ, Edden RAE, Swinnen SP. The neurochemical basis of the contextual interference effect. Neurobiol Aging 2018; 66:85-96. [PMID: 29549874 DOI: 10.1016/j.neurobiolaging.2018.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/03/2018] [Accepted: 02/13/2018] [Indexed: 01/17/2023]
Abstract
Efficient practice organization maximizes learning outcome. Although randomization of practice as compared to blocked practice damages training performance, it boosts retention performance, an effect called contextual interference. Motor learning modulates the GABAergic (gamma-aminobutyric acid) system within the sensorimotor cortex (SM); however, it is unclear whether different practice regimes differentially modulate this system and whether this is impacted by aging. Young and older participants were trained on 3 variations of a visuomotor task over 3 days, following either blocked or random practice schedule and retested 6 days later. Using magnetic resonance spectroscopy, SM and occipital cortex GABA+ levels were measured before and after training during the first and last training days. We found that (1) behavioral data confirmed the contextual interference effects, (2) within-day occipital cortex GABA+ levels decreased in random and increased in blocked group. This effect was more pronounced in older adults; and (3) baseline SM GABA+ levels predicted initial performance. These findings indicate a differential modulation of GABA levels across practice groups that is amplified by aging.
Collapse
Affiliation(s)
- Sima Chalavi
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium
| | - Lisa Pauwels
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium
| | - Kirstin-Friederike Heise
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium
| | - Hamed Zivari Adab
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium
| | - Celine Maes
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St., Park 367C, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Maryland, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St., Park 367C, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Maryland, USA
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; Leuven Research Institute for Neuroscience & Disease (LIND), KU Leuven, Leuven, Belgium.
| |
Collapse
|
32
|
Solesio-Jofre E, Beets IAM, Woolley DG, Pauwels L, Chalavi S, Mantini D, Swinnen SP. Age-Dependent Modulations of Resting State Connectivity Following Motor Practice. Front Aging Neurosci 2018; 10:25. [PMID: 29467646 PMCID: PMC5808218 DOI: 10.3389/fnagi.2018.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022] Open
Abstract
Recent work in young adults has demonstrated that motor learning can modulate resting state functional connectivity. However, evidence for older adults is scarce. Here, we investigated whether learning a bimanual tracking task modulates resting state functional connectivity of both inter- and intra-hemispheric regions differentially in young and older individuals, and whether this has behavioral relevance. Both age groups learned a set of complex bimanual tracking task variants over a 2-week training period. Resting-state and task-related functional magnetic resonance imaging scans were collected before and after training. Our analyses revealed that both young and older adults reached considerable performance gains. Older adults even obtained larger training-induced improvements relative to baseline, but their overall performance levels were lower than in young adults. Short-term practice resulted in a modulation of resting state functional connectivity, leading to connectivity increases in young adults, but connectivity decreases in older adults. This pattern of age differences occurred for both inter- and intra-hemispheric connections related to the motor network. Additionally, long-term training-induced increases were observed in intra-hemispheric connectivity in the right hemisphere across both age groups. Overall, at the individual level, the long-term changes in inter-hemispheric connectivity correlated with training-induced motor improvement. Our findings confirm that short-term task practice shapes spontaneous brain activity differentially in young and older individuals. Importantly, the association between changes in resting state functional connectivity and improvements in motor performance at the individual level may be indicative of how training shapes the short-term functional reorganization of the resting state motor network for improvement of behavioral performance.
Collapse
Affiliation(s)
- Elena Solesio-Jofre
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Department of Biological and Health Psychology, Autonomous University of Madrid, Madrid, Spain
| | - Iseult A M Beets
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Daniel G Woolley
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Lisa Pauwels
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Research Institute for Neuroscience and Disease, KU Leuven, Leuven, Belgium
| |
Collapse
|