1
|
Yang Z, Lange F, Xia Y, Chertavian C, Cabolis K, Sajic M, Werring DJ, Tachtsidis I, Smith KJ. Nimodipine Protects Vascular and Cognitive Function in an Animal Model of Cerebral Small Vessel Disease. Stroke 2024; 55:1914-1922. [PMID: 38860370 PMCID: PMC11251505 DOI: 10.1161/strokeaha.124.047154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Cerebral small vessel disease is a common cause of vascular cognitive impairment and dementia. There is an urgent need for preventative treatments for vascular cognitive impairment and dementia, and reducing vascular dysfunction may provide a therapeutic route. Here, we investigate whether the chronic administration of nimodipine, a central nervous system-selective dihydropyridine calcium channel blocking agent, protects vascular, metabolic, and cognitive function in an animal model of cerebral small vessel disease, the spontaneously hypertensive stroke-prone rat. METHODS Male spontaneously hypertensive stroke-prone rats were randomly allocated to receive either a placebo (n=24) or nimodipine (n=24) diet between 3 and 6 months of age. Animals were examined daily for any neurological deficits, and vascular function was assessed in terms of neurovascular and neurometabolic coupling at 3 and 6 months of age, and cerebrovascular reactivity at 6 months of age. Cognitive function was evaluated using the novel object recognition test at 6 months of age. RESULTS Six untreated control animals were terminated prematurely due to strokes, including one due to seizure, but no treated animals experienced strokes and so had a higher survival (P=0.0088). Vascular function was significantly impaired with disease progression, but nimodipine treatment partially preserved neurovascular coupling and neurometabolic coupling, indicated by larger (P<0.001) and more prompt responses (P<0.01), and less habituation upon repeated stimulation (P<0.01). Also, animals treated with nimodipine showed greater cerebrovascular reactivity, indicated by larger dilation of arterioles (P=0.015) and an increase in blood flow velocity (P=0.001). This protection of vascular and metabolic function achieved by nimodipine treatment was associated with better cognitive function (P<0.001) in the treated animals. CONCLUSIONS Chronic treatment with nimodipine protects from strokes, and vascular and cognitive deficits in spontaneously hypertensive stroke-prone rat. Nimodipine may provide an effective preventive treatment for stroke and cognitive decline in cerebral small vessel disease.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering (F.L., I.T.), University College London, United Kingdom
| | - Yiqing Xia
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Casey Chertavian
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Katerina Cabolis
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Marija Sajic
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - David J. Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology (D.J.W.), University College London, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering (F.L., I.T.), University College London, United Kingdom
| | - Kenneth J. Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| |
Collapse
|
2
|
Rowsthorn E, Pham W, Nazem-Zadeh MR, Law M, Pase MP, Harding IH. Imaging the neurovascular unit in health and neurodegeneration: a scoping review of interdependencies between MRI measures. Fluids Barriers CNS 2023; 20:97. [PMID: 38129925 PMCID: PMC10734164 DOI: 10.1186/s12987-023-00499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The neurovascular unit (NVU) is a complex structure that facilitates nutrient delivery and metabolic waste clearance, forms the blood-brain barrier (BBB), and supports fluid homeostasis in the brain. The integrity of NVU subcomponents can be measured in vivo using magnetic resonance imaging (MRI), including quantification of enlarged perivascular spaces (ePVS), BBB permeability, cerebral perfusion and extracellular free water. The breakdown of NVU subparts is individually associated with aging, pathology, and cognition. However, how these subcomponents interact as a system, and how interdependencies are impacted by pathology remains unclear. This systematic scoping review identified 26 studies that investigated the inter-relationships between multiple subcomponents of the NVU in nonclinical and neurodegenerative populations using MRI. A further 112 studies investigated associations between the NVU and white matter hyperintensities (WMH). We identify two putative clusters of NVU interdependencies: a 'vascular' cluster comprising BBB permeability, perfusion and basal ganglia ePVS; and a 'fluid' cluster comprising ePVS, free water and WMH. Emerging evidence suggests that subcomponent coupling within these clusters may be differentially related to aging, neurovascular injury or neurodegenerative pathology.
Collapse
Affiliation(s)
- Ella Rowsthorn
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton, VIC, 3168, Australia
| | - William Pham
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mohammad-Reza Nazem-Zadeh
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Radiology, Alfred Health, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3168, Australia
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton, VIC, 3168, Australia
- Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Monash Biomedical Imaging, Monash University, 762-772 Blackburn Road, Clayton, VIC, 3168, Australia.
| |
Collapse
|
3
|
Scheuermann BC, Parr SK, Schulze KM, Kunkel ON, Turpin VG, Liang J, Ade CJ. Associations of Cerebrovascular Regulation and Arterial Stiffness With Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2023; 12:e032616. [PMID: 37930079 PMCID: PMC10727345 DOI: 10.1161/jaha.123.032616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Cerebral small vessel disease (cSVD) is a major contributing factor to ischemic stroke and dementia. However, the vascular pathologies of cSVD remain inconclusive. The aim of this systematic review and meta-analysis was to characterize the associations between cSVD and cerebrovascular reactivity (CVR), cerebral autoregulation, and arterial stiffness (AS). METHODS AND RESULTS MEDLINE, Web of Science, and Embase were searched from inception to September 2023 for studies reporting CVR, cerebral autoregulation, or AS in relation to radiological markers of cSVD. Data were extracted in predefined tables, reviewed, and meta-analyses performed using inverse-variance random effects models to determine pooled odds ratios (ORs). A total of 1611 studies were identified; 142 were included in the systematic review, of which 60 had data available for meta-analyses. Systematic review revealed that CVR, cerebral autoregulation, and AS were consistently associated with cSVD (80.4%, 78.6%, and 85.4% of studies, respectively). Meta-analysis in 7 studies (536 participants, 32.9% women) revealed a borderline association between impaired CVR and cSVD (OR, 2.26 [95% CI, 0.99-5.14]; P=0.05). In 37 studies (27 952 participants, 53.0% women) increased AS, per SD, was associated with cSVD (OR, 1.24 [95% CI, 1.15-1.33]; P<0.01). Meta-regression adjusted for comorbidities accounted for one-third of the AS model variance (R2=29.4%, Pmoderators=0.02). Subgroup analysis of AS studies demonstrated an association with white matter hyperintensities (OR, 1.42 [95% CI, 1.18-1.70]; P<0.01). CONCLUSIONS The collective findings of the present systematic review and meta-analyses suggest an association between cSVD and impaired CVR and elevated AS. However, longitudinal investigations into vascular stiffness and regulatory function as possible risk factors for cSVD remain warranted.
Collapse
Affiliation(s)
| | - Shannon K. Parr
- Department of KinesiologyKansas State UniversityManhattanKSUSA
| | | | | | | | - Jia Liang
- Department of Biostatistics, St. Jude Children’s Research HospitalMemphisTNUSA
| | - Carl J. Ade
- Department of KinesiologyKansas State UniversityManhattanKSUSA
- Department of Physician’s Assistant Studies, Kansas State UniversityManhattanKSUSA
- Johnson Cancer Research CenterKansas State UniversityManhattanKSUSA
| |
Collapse
|
4
|
Swinford CG, Risacher SL, Wu YC, Apostolova LG, Gao S, Bice PJ, Saykin AJ. Altered cerebral blood flow in older adults with Alzheimer's disease: a systematic review. Brain Imaging Behav 2023; 17:223-256. [PMID: 36484922 PMCID: PMC10117447 DOI: 10.1007/s11682-022-00750-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/26/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
The prevalence of Alzheimer's disease is projected to reach 13 million in the U.S. by 2050. Although major efforts have been made to avoid this outcome, so far there are no treatments that can stop or reverse the progressive cognitive decline that defines Alzheimer's disease. The utilization of preventative treatment before significant cognitive decline has occurred may ultimately be the solution, necessitating a reliable biomarker of preclinical/prodromal disease stages to determine which older adults are most at risk. Quantitative cerebral blood flow is a promising potential early biomarker for Alzheimer's disease, but the spatiotemporal patterns of altered cerebral blood flow in Alzheimer's disease are not fully understood. The current systematic review compiles the findings of 81 original studies that compared resting gray matter cerebral blood flow in older adults with mild cognitive impairment or Alzheimer's disease and that of cognitively normal older adults and/or assessed the relationship between cerebral blood flow and objective cognitive function. Individuals with Alzheimer's disease had relatively decreased cerebral blood flow in all brain regions investigated, especially the temporoparietal and posterior cingulate, while individuals with mild cognitive impairment had consistent results of decreased cerebral blood flow in the posterior cingulate but more mixed results in other regions, especially the frontal lobe. Most papers reported a positive correlation between regional cerebral blood flow and cognitive function. This review highlights the need for more studies assessing cerebral blood flow changes both spatially and temporally over the course of Alzheimer's disease, as well as the importance of including potential confounding factors in these analyses.
Collapse
Affiliation(s)
- Cecily G Swinford
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Vance DE, Lee Y, Batey DS, Li W, Chapman Lambert C, Nakkina SR, Anderson JN, Triebel K, Byun JY, Fazeli PL. Emerging directions of cognitive aging with HIV: practice and policy implications for social work. JOURNAL OF GERONTOLOGICAL SOCIAL WORK 2022; 65:476-494. [PMID: 34511048 DOI: 10.1080/01634372.2021.1978028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Cognitive impairments have been endemic to the HIV epidemic since its beginning and persist to this day. These impairments are attributed to HIV-induced neuroinflammation, the long-term effects of combination antiretroviral therapy, lifestyle factors (e.g., sedentary behavior, substance use), neuro-comorbidities (e.g., depression), age-associated comorbidities (e.g., heart disease, hypertension), and others causes. Normal aging and lifestyle also contribute to the development of cognitive impairment. Regardless of the etiology, such cognitive impairments interfere with HIV care (e.g., medication adherence) and everyday functioning (e.g., driving safely, financial management). With more than half of people with HIV (PWH) 50 years and older, and ~45% of all PWH meeting the criteria for HIV-Associated Neurocognitive Disorder (HAND), those aging PWH are more vulnerable for developing cognitive impairment. This article provides an update to a social work model to identify and monitor PWH for cognitive impairment. Within this update, the state of the science on protecting brain health and cognitive reserve within the context of neuroHIV is also presented. From this, implications for practice and policy to promote successful cognitive functioning in older PWH are provided.
Collapse
Affiliation(s)
- David E Vance
- School of Nursing, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yookyong Lee
- Department of Social Work, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David Scott Batey
- Department of Social Work, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wei Li
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Sai Rashmi Nakkina
- College of Arts and Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joseph N Anderson
- School of Medicine, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kristen Triebel
- School of Medicine, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jun Y Byun
- School of Nursing, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pariya L Fazeli
- School of Nursing, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Neumann K, Günther M, Düzel E, Schreiber S. Microvascular Impairment in Patients With Cerebral Small Vessel Disease Assessed With Arterial Spin Labeling Magnetic Resonance Imaging: A Pilot Study. Front Aging Neurosci 2022; 14:871612. [PMID: 35663571 PMCID: PMC9161030 DOI: 10.3389/fnagi.2022.871612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this pilot study, we investigated microvascular impairment in patients with cerebral small vessel disease (CSVD) using non-invasive arterial spin labeling (ASL) magnetic resonance imaging (MRI). This method enabled us to measure the perfusion parameters, cerebral blood flow (CBF), and arterial transit time (ATT), and the effective T1-relaxation time (T1eff) to research a novel approach of assessing perivascular clearance. CSVD severity was characterized using the Standards for Reporting Vascular Changes on Neuroimaging (STRIVE) and included a rating of white matter hyperintensities (WMHs), lacunes, enlarged perivascular spaces (EPVSs), and cerebral microbleeds (CMBs). Here, we found that CBF decreases and ATT increases with increasing CSVD severity in patients, most prominent for a white matter (WM) region-of-interest, whereas this relation was almost equally driven by WMHs, lacunes, EPVSs, and CMBs. Additionally, we observed a longer mean T1eff of gray matter and WM in patients with CSVD compared to elderly controls, providing an indication of impaired clearance in patients. Mainly T1eff of WM was associated with CSVD burden, whereas lobar lacunes and CMBs contributed primary to this relation compared to EPVSs of the centrum semiovale. Our results complement previous findings of CSVD-related hypoperfusion by the observation of retarded arterial blood arrival times in brain tissue and by an increased T1eff as potential indication of impaired clearance rates using ASL.
Collapse
Affiliation(s)
- Katja Neumann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- *Correspondence: Katja Neumann
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
- mediri GmbH, Heidelberg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Center for Behavioral Brain Science, Magdeburg, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
7
|
Mun J, Jung J, Park C. Effects of cerebral hypoperfusion on the cerebral white matter: a meta‑analysis. Acta Neurobiol Exp (Wars) 2021; 81:295-306. [PMID: 34672300 DOI: 10.21307/ane-2021-029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Decreased cerebral blood flow (CBF) in aging is known to induce aging‑related cerebral deteriorations, such as neuronal degeneration, white matter (WM) alterations, and vascular deformations. However, the effects of cerebral hypoperfusion on WM alterations remain unclear. This study investigates the relationship between cerebral hypoperfusion and WM total volume changes by assessing the trends in CBF and WM changes by meta‑analysis. In this meta‑analysis, the differences in CBF were compared according to cerebral hypoperfusion type and the effect of cerebral hypoperfusion on the total volume of WM changes in rodents. Using subgroup analysis, 13 studies were evaluated for comparing CBF according to the type of cerebral hypoperfusion; 12 studies were evaluated for comparing the effects of cerebral hypoperfusion on the total volume of WM changes. Our meta‑analysis shows that the total volume of WM decreases with a decrease in CBF. However, the reduction in\r\nthe total volume of WM was greater in normal aging mice than in the cerebral hypoperfusion model mice. These results suggest that the reduction of cerebral WM volume during the aging process is affected by other factors in addition to a decrease in CBF.
Collapse
Affiliation(s)
- Juyeon Mun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chan Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea;
| |
Collapse
|
8
|
Kuhn T, Becerra S, Duncan J, Spivak N, Dang BH, Habelhah B, Mahdavi KD, Mamoun M, Whitney M, Pereles FS, Bystritsky A, Jordan SE. Translating state-of-the-art brain magnetic resonance imaging (MRI) techniques into clinical practice: multimodal MRI differentiates dementia subtypes in a traditional clinical setting. Quant Imaging Med Surg 2021; 11:4056-4073. [PMID: 34476189 PMCID: PMC8339641 DOI: 10.21037/qims-20-1355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/25/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND This study sought to validate the clinical utility of multimodal magnetic resonance imaging (MRI) techniques in the assessment of neurodegenerative disorders. We intended to demonstrate that advanced neuroimaging techniques commonly used in research can effectively be employed in clinical practice to accurately differentiate heathy aging and dementia subtypes. METHODS Twenty patients with dementia of the Alzheimer's type (DAT) and 18 patients with Parkinson's disease dementia (PDD) were identified using gold-standard techniques. Twenty-three healthy, age and sex matched control participants were also recruited. All participants underwent multimodal MRI including T1 structural, diffusion tensor imaging (DTI), arterial spin labeling (ASL), and magnetic resonance spectroscopy (MRS). MRI modalities were evaluated by trained neuroimaging readers and were separately assessed using cross-validated, iterative discriminant function analyses with subsequent feature reduction techniques. In this way, each modality was evaluated for its ability to differentiate patients with dementia from healthy controls as well as to differentiate dementia subtypes. RESULTS Following individual and group feature reduction, each of the multimodal MRI metrics except MRS successfully differentiated healthy aging from dementia and also demonstrated distinct dementia subtypes. Using the following ten metrics, excellent separation (95.5% accuracy, 92.3% sensitivity; 100.0% specificity) was achieved between healthy aging and neurodegenerative conditions: volume of the left frontal pole, left occipital pole, right posterior superior temporal gyrus, left posterior cingulate gyrus, right planum temporale; perfusion of the left hippocampus and left occipital lobe; fractional anisotropy (FA) of the forceps major and bilateral anterior thalamic radiation. Using volume of the left frontal pole, right posterior superior temporal gyrus, left posterior cingulate gyrus, perfusion of the left hippocampus and left occipital lobe; FA of the forceps major and bilateral anterior thalamic radiation, neurodegenerative subtypes were accurately differentiated as well (87.8% accuracy, 95.2% sensitivity; 85.0% specificity). CONCLUSIONS Regional volumetrics, DTI metrics, and ASL successfully differentiated dementia patients from controls with sufficient sensitivity to differentiate dementia subtypes. Similarly, feature reduction results suggest that advanced analyses can meaningfully identify brain regions with the most positive predictive value and discriminant validity. Together, these advanced neuroimaging techniques can contribute significantly to diagnosis and treatment planning for individual patients.
Collapse
Affiliation(s)
- Taylor Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Sergio Becerra
- Neurology Management Associates, Los Angeles, California, USA
| | - John Duncan
- Neurology Management Associates, Los Angeles, California, USA
| | - Norman Spivak
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Bianca Huan Dang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | - Alexander Bystritsky
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Sheldon E. Jordan
- Neurology Management Associates, Los Angeles, California, USA
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Shaaban CE, Rosano C, Cohen AD, Huppert T, Butters MA, Hengenius J, Parks WT, Catov JM. Cognition and Cerebrovascular Reactivity in Midlife Women With History of Preeclampsia and Placental Evidence of Maternal Vascular Malperfusion. Front Aging Neurosci 2021; 13:637574. [PMID: 34017243 PMCID: PMC8129174 DOI: 10.3389/fnagi.2021.637574] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Preeclampsia is emerging as a sex-specific risk factor for cerebral small vessel disease (SVD) and dementia, but the reason is unknown. We assessed the relationship of maternal vascular malperfusion (MVM), a marker of placental SVD, with cognition and cerebral SVD in women with and without preeclampsia. We hypothesized women with both preeclampsia and MVM would perform worst on information processing speed and executive function. Methods: Women (n = 45; mean 10.5 years post-delivery; mean age: 41 years; 42.2% Black) were classified as preeclampsia-/MVM-, preeclampsia+/MVM-, or preeclampsia+/MVM+. Information processing speed, executive function, and memory were assessed. In a pilot sub-study of cerebrovascular reactivity (CVR; n = 22), cerebral blood flow during room-air breathing and breath-hold induced hypercapnia were obtained via arterial spin labeling MRI. Non-parametric tests and regression models were used to test associations. Results: Between-group cognitive differences were significant for information processing speed (p = 0.02); preeclampsia+/MVM+ had the lowest scores. Cerebral blood flow increased from room-air to breath-hold, globally and in all regions in the three groups, except the preeclampsia+/MVM+ parietal region (p = 0.12). Lower parietal CVR (less change from room-air breathing to breath-holding) was correlated with poorer information processing speed (partial ρ = 0.63, p = 0.005) and executive function (ρ = 0.50, p = 0.03) independent of preeclampsia/MVM status. Conclusion: Compared to women without preeclampsia and MVM, midlife women with both preeclampsia and MVM have worse information processing speed and may have blunted parietal CVR, an area important for information processing speed and executive function. MVM in women with preeclampsia is a promising sex-specific indicator of cerebrovascular integrity in midlife.
Collapse
Affiliation(s)
- C Elizabeth Shaaban
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Theodore Huppert
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - James Hengenius
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - W Tony Parks
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Janet M Catov
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Stewart CR, Stringer MS, Shi Y, Thrippleton MJ, Wardlaw JM. Associations Between White Matter Hyperintensity Burden, Cerebral Blood Flow and Transit Time in Small Vessel Disease: An Updated Meta-Analysis. Front Neurol 2021; 12:647848. [PMID: 34017302 PMCID: PMC8129542 DOI: 10.3389/fneur.2021.647848] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
Cerebral small vessel disease (SVD) is a major contributor to stroke and dementia, characterized by white matter hyperintensities (WMH) on neuroimaging. WMH are associated with reduced cerebral blood flow (CBF) cross-sectionally, though longitudinal associations remain unclear. We updated a 2016 systematic review, identifying 30 new studies, 27 cross-sectional (n = 2,956) and 3 longitudinal (n = 440). Cross-sectionally, 10/27 new studies (n = 1,019) included sufficient data for meta-analysis, which we meta-analyzed with 24 previously reported studies (n = 1,161), total 34 (n = 2,180). Our meta-analysis showed that patients with lower CBF had worse WMH burden (mean global CBF: standardized mean difference (SMD): −0.45, 95% confidence interval (CI): −0.64, −0.27). Longitudinally, associations between baseline CBF and WMH progression varied: the largest study (5 years, n = 252) found no associations, while another small study (4.5 years, n = 52) found that low CBF in the periventricular WMH penumbra predicted WMH progression. We could not meta-analyse longitudinal studies due to different statistical and methodological approaches. We found that CBF was lower in WMH than in normal-appearing white matter in an additional meta-analysis (5 cross-sectional studies; n = 295; SMD: −1.51, 95% CI: −1.94, −1.07). These findings highlight that relationships between resting CBF and WMH are complex. Further longitudinal studies analyzing regional CBF and subsequent WMH change are required to determine the role of CBF in SVD progression.
Collapse
Affiliation(s)
- Catriona R Stewart
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Edinburgh, United Kingdom
| | - Yulu Shi
- Beijing Tian Tan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Jann K, Shao X, Ma SJ, Cen SY, D'Orazio L, Barisano G, Yan L, Casey M, Lamas J, Staffaroni AM, Kramer JH, Ringman JM, Wang DJJ. Evaluation of Cerebral Blood Flow Measured by 3D PCASL as Biomarker of Vascular Cognitive Impairment and Dementia (VCID) in a Cohort of Elderly Latinx Subjects at Risk of Small Vessel Disease. Front Neurosci 2021; 15:627627. [PMID: 33584191 PMCID: PMC7873482 DOI: 10.3389/fnins.2021.627627] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 01/16/2023] Open
Abstract
Cerebral small vessel disease (cSVD) affects arterioles, capillaries, and venules and can lead to cognitive impairments and clinical symptomatology of vascular cognitive impairment and dementia (VCID). VCID symptoms are similar to Alzheimer’s disease (AD) but the neurophysiologic alterations are less well studied, resulting in no established biomarkers. The purpose of this study was to evaluate cerebral blood flow (CBF) measured by 3D pseudo-continuous arterial spin labeling (pCASL) as a potential biomarker of VCID in a cohort of elderly Latinx subjects at risk of cSVD. Forty-five elderly Latinx subjects (12 males, 69 ± 7 years) underwent repeated MRI scans ∼6 weeks apart. CBF was measured using 3D pCASL in the whole brain, white matter and 4 main vascular territories (leptomeningeal anterior, middle, and posterior cerebral artery (leptoACA, leptoMCA, leptoPCA), as well as MCA perforator). The test-retest repeatability of CBF was assessed by intra-class correlation coefficient (ICC) and within-subject coefficient of variation (wsCV). Absolute and relative CBF was correlated with gross cognitive measures and domain specific assessment of executive and memory function, vascular risks, and Fazekas scores and volumes of white matter hyperintensity (WMH). Neurocognitive evaluations were performed using Montreal Cognitive Assessment (MoCA) and neuropsychological test battery in the Uniform Data Set v3 (UDS3). Good to excellent test-retest repeatability was achieved (ICC = 0.77–0.85, wsCV 3–9%) for CBF measurements in the whole brain, white matter, and 4 vascular territories. Relative CBF normalized by global mean CBF in the leptoMCA territory was positively correlated with the executive function composite score, while relative CBF in the leptoMCA and MCA perforator territory was positively correlated with MoCA scores, controlling for age, gender, years of education, and testing language. Relative CBF in WM was negatively correlated with WMH volume and MoCA scores, while relative leptoMCA CBF was positively correlated with WMH volume. Reliable 3D pCASL CBF measurements were achieved in the cohort of elderly Latinx subjects. Relative CBF in the leptomeningeal and perforator MCA territories were the most likely candidate biomarker of VCID. These findings need to be replicated in larger cohorts with greater variability of stages of cSVD.
Collapse
Affiliation(s)
- Kay Jann
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xingfeng Shao
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Samantha J Ma
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Steven Y Cen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lina D'Orazio
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Giuseppe Barisano
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lirong Yan
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Marlena Casey
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jesse Lamas
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Danny J J Wang
- Laboratory of FMRI Technology, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Gur RC, Butler ER, Moore TM, Rosen AFG, Ruparel K, Satterthwaite TD, Roalf DR, Gennatas ED, Bilker WB, Shinohara RT, Port A, Elliott MA, Verma R, Davatzikos C, Wolf DH, Detre JA, Gur RE. Structural and Functional Brain Parameters Related to Cognitive Performance Across Development: Replication and Extension of the Parieto-Frontal Integration Theory in a Single Sample. Cereb Cortex 2020; 31:1444-1463. [PMID: 33119049 DOI: 10.1093/cercor/bhaa282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The parieto-frontal integration theory (PFIT) identified a fronto-parietal network of regions where individual differences in brain parameters most strongly relate to cognitive performance. PFIT was supported and extended in adult samples, but not in youths or within single-scanner well-powered multimodal studies. We performed multimodal neuroimaging in 1601 youths age 8-22 on the same 3-Tesla scanner with contemporaneous neurocognitive assessment, measuring volume, gray matter density (GMD), mean diffusivity (MD), cerebral blood flow (CBF), resting-state functional magnetic resonance imaging measures of the amplitude of low frequency fluctuations (ALFFs) and regional homogeneity (ReHo), and activation to a working memory and a social cognition task. Across age and sex groups, better performance was associated with higher volumes, greater GMD, lower MD, lower CBF, higher ALFF and ReHo, and greater activation for the working memory task in PFIT regions. However, additional cortical, striatal, limbic, and cerebellar regions showed comparable effects, hence PFIT needs expansion into an extended PFIT (ExtPFIT) network incorporating nodes that support motivation and affect. Associations of brain parameters became stronger with advancing age group from childhood to adolescence to young adulthood, effects occurring earlier in females. This ExtPFIT network is developmentally fine-tuned, optimizing abundance and integrity of neural tissue while maintaining a low resting energy state.
Collapse
Affiliation(s)
- Ruben C Gur
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ellyn R Butler
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tyler M Moore
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Adon F G Rosen
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kosha Ruparel
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David R Roalf
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Efstathios D Gennatas
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Warren B Bilker
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Allison Port
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Elliott
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ragini Verma
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel H Wolf
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory and the Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Ni L, Zhang B, Yang D, Qin R, Xu H, Ma J, Shao P, Xu Y. Lower Cerebrovascular Reactivity Contributed to White Matter Hyperintensity-Related Cognitive Impairment: A Resting-State Functional MRI Study. J Magn Reson Imaging 2020; 53:703-711. [PMID: 32996183 DOI: 10.1002/jmri.27376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Impaired cerebrovascular reactivity (CVR) plays an important role in the pathophysiology of white matter hyperintensities (WMHs). The pathogenesis of CVR in the development of WMH-related cognitive impairment (CI) remains poorly understood. PURPOSE To detect the CVR status in WMH subjects with/without CI by using a resting-state blood oxygenation level-dependent (BOLD) approach and to explore the mediating relationships among CVR, WMH, and cognitive level. STUDY TYPE Prospective. SUBJECTS Subjects with moderate to severe WMH (with CI [WMH-CI], n = 68; without CI [WMH-no-CI, n = 63) as well as normal controls (NCs, n = 87). FIELD STRENGTH/SEQUENCE 3.0T with gradient-recalled echoplanar imaging and 3D fluid-attenuated inversion recovery. ASSESSMENT The CVR, WMH volume, and cognitive level were assessed. The CVR map was derived using BOLD signal obtained from resting-state functional MRI data. STATISTICAL TESTS CVR maps were compared among the three groups. Partial correlation analyses were performed to correlate impaired CVR with WMH volume and cognitive test scores. Mediation analysis was conducted to determine whether WMH acted as a mediating factor between CVR and cognitive function. RESULTS Compared with the NC group, both WMH groups showed reduced CVR in the left hemisphere (P < 0.05). The WMH-CI group showed further decreased CVR in the left frontal area, when compared with the WMH-no-CI group (P < 0.05). In the WMH-CI group, the lower CVR in left frontal area was a strong indicator of poor performance on general cognition (r = 0.311), executive function (r = 0.362), and information processing speed (r = 0.399) (all P < 0.05). Periventricular WMH (PWMH) volume mediated these correlations, the β and 95% bootstrap confidence intervals were (0.5097, [0.1498,1.1385]), (-0.4081, [-1.0256,-0.1363]), and (-0.5576, [-1.4666,-0.1538]), respectively. DATA CONCLUSION WMH-CI subjects showed a greater reduction of CVR derived from a resting-state BOLD approach in the left frontal area than WMH-no-CI subjects. Cognition was highly dependent on the integrity of cerebrovascular reactivity and mediated by PWMH burden. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ling Ni
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dan Yang
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hengheng Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junyi Ma
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Rane S, Owen J, Hippe DS, Cholerton B, Zabetian CP, Montine T, Grabowski TJ. White Matter Lesions in Mild Cognitive Impairment and Idiopathic Parkinson's Disease: Multimodal Advanced MRI and Cognitive Associations. J Neuroimaging 2020; 30:843-850. [PMID: 32937003 DOI: 10.1111/jon.12778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/13/2020] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular disease is a common comorbidity in older adults, typically assessed in terms of white matter hyperintensities (WMHs) on MRI. While it is well known that WMHs exacerbate cognitive symptoms, the exact relation of WMHs with cognitive performance and other degenerative diseases is unknown. Furthermore, based on location, WMHs are often classified into periventricular and deep WMHs and are believed to have different pathological origins. Whether the two types of WMHs influence cognition differently is unclear. Using regression models, we assessed the independent association of these two types of WMHs with cognitive performance in two separate studies focused on distinct degenerative diseases, early Alzheimer's (mild cognitive impairment), and Parkinson's disease. We further tested if the two types of WMHs were differentially associated with reduced cortical cerebral blood flow (CBF) as measured by arterial spin labeling and increased mean diffusivity (MD, a marker of tissue injury) as measured by diffusion imaging. Our approach revealed that both deep and periventricular WMHs were associated with poor performance on tests of global cognition (Montreal cognitive Assessment, MoCA), task processing (Trail making test), and category fluency in the study of mild cognitive impairment. They were associated with poor performance in global cognition (MoCA) and category fluency in the Parkinson's disease study. Of note, more associations were detected between cognitive performance and deep WMHs than between cognitive performance and periventricular WMHs. Mechanistically, both deep and periventricular WMHs were associated with increased MD. Both deep and periventricular WMHs were also associated with reduced CBF in the gray matter.
Collapse
Affiliation(s)
- Swati Rane
- Department of Radiology, Integrated Brain Imaging Center, University of Washington Medical Center, Seattle, WA
| | - Julia Owen
- Department of Radiology, Integrated Brain Imaging Center, University of Washington Medical Center, Seattle, WA
| | - Daniel S Hippe
- Department of Radiology, Integrated Brain Imaging Center, University of Washington Medical Center, Seattle, WA
| | | | - Cyrus P Zabetian
- Veterans Affairs Puget Sound Health Care System, Seattle, WA.,Department of Neurology, University of Washington Medical Center, Seattle, WA
| | - Tom Montine
- Department of Pathology, Stanford University, Stanford, CA
| | - Thomas J Grabowski
- Department of Radiology, Integrated Brain Imaging Center, University of Washington Medical Center, Seattle, WA.,Department of Neurology, University of Washington Medical Center, Seattle, WA
| |
Collapse
|
15
|
Ni L, Zhou F, Qing Z, Zhang X, Li M, Zhu B, Zhang B, Xu Y. The Asymmetry of White Matter Hyperintensity Burden Between Hemispheres Is Associated With Intracranial Atherosclerotic Plaque Enhancement Grade. Front Aging Neurosci 2020; 12:163. [PMID: 32655391 PMCID: PMC7324557 DOI: 10.3389/fnagi.2020.00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/12/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose The contribution of intracranial atherosclerotic stenosis (ICAS) to the development of white matter hyperintensities (WMHs) has not been fully elucidated. We aimed to retrospectively assess the relationship between WMH burden and unilateral ICAS by combined examination of lumen stenosis, plaque enhancement, and cerebral perfusion. Materials and methods A cross-sectional study of 41 patients with symptomatic unilateral ICAS (mean age 57 ± 10 years; 26 males) was conducted. Detailed clinical data, including vascular risk factors, were obtained. WMH volume was derived from 3D-fluid-attenuated inversion recovery (3D-FLAIR) and was assessed by using a validated semi-automated protocol. Lumen stenosis, plaque enhancement, and cerebral perfusion (assessed on time-to-peak parameter using the Alberta Stroke Program Early CT score (TTP-ASPECTS) scale) were evaluated. The WMH volumes of peri-ventricular (PWMH) and deep (DWMH) white matter were calculated separately and compared between hemispheres. Associations between WMH volume (inter-hemispheric volume difference, ipsilateral and contralateral to the ICAS site separately), unilateral ICAS imaging metrics, and vascular risk factors were assessed by using linear regression. Results The DWMH volume ipsilateral to the ICAS site (ipsilateral DWMH volume) was significantly greater than that of the contralateral site (P < 0.001), while the PWMH volume difference between hemispheres did not reach statistical significance. The inter-hemispheric DWMH volume difference was significantly associated with a higher plaque enhancement grade (β = 0.436, P = 0.005) and inversely associated with cerebral hypoperfusion (lower TTP-ASPECTS) (β = −0.613, P < 0.001). In the between-subject multivariable regression analysis, while older age (β = 0.323, P = 0.025), hypoperfusion (β = −0.394, P = 0.007), and hypertension (β = 0.378, P = 0.011) were independently associated with ipsilateral DWMH volume, plaque enhancement did not show an association with ipsilateral DWMH volume. The association between ipsilateral DWMH volume and lumen stenosis approached statistical significance (β = 0.274, P = 0.084). Conclusion The DWMH was attributed to chronic hypoperfusion secondary to atherosclerotic stenosis. The association between the asymmetry of deep white matter lesions and plaque enhancement might suggest that increased deep white matter lesions are those ischemic lesions, which are more prone to the development of stroke.
Collapse
Affiliation(s)
- Ling Ni
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fei Zhou
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhao Qing
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ming Li
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bin Zhu
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Smith EE, Biessels GJ, De Guio F, de Leeuw FE, Duchesne S, Düring M, Frayne R, Ikram MA, Jouvent E, MacIntosh BJ, Thrippleton MJ, Vernooij MW, Adams H, Backes WH, Ballerini L, Black SE, Chen C, Corriveau R, DeCarli C, Greenberg SM, Gurol ME, Ingrisch M, Job D, Lam BY, Launer LJ, Linn J, McCreary CR, Mok VC, Pantoni L, Pike GB, Ramirez J, Reijmer YD, Romero JR, Ropele S, Rost NS, Sachdev PS, Scott CJ, Seshadri S, Sharma M, Sourbron S, Steketee RM, Swartz RH, van Oostenbrugge R, van Osch M, van Rooden S, Viswanathan A, Werring D, Dichgans M, Wardlaw JM. Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:191-204. [PMID: 30859119 PMCID: PMC6396326 DOI: 10.1016/j.dadm.2019.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Many consequences of cerebrovascular disease are identifiable by magnetic resonance imaging (MRI), but variation in methods limits multicenter studies and pooling of data. The European Union Joint Program on Neurodegenerative Diseases (EU JPND) funded the HARmoNizing Brain Imaging MEthodS for VaScular Contributions to Neurodegeneration (HARNESS) initiative, with a focus on cerebral small vessel disease. METHODS Surveys, teleconferences, and an in-person workshop were used to identify gaps in knowledge and to develop tools for harmonizing imaging and analysis. RESULTS A framework for neuroimaging biomarker development was developed based on validating repeatability and reproducibility, biological principles, and feasibility of implementation. The status of current MRI biomarkers was reviewed. A website was created at www.harness-neuroimaging.org with acquisition protocols, a software database, rating scales and case report forms, and a deidentified MRI repository. CONCLUSIONS The HARNESS initiative provides resources to reduce variability in measurement in MRI studies of cerebral small vessel disease.
Collapse
Affiliation(s)
- Eric E. Smith
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - François De Guio
- Department of Neurology, Lariboisière Hospital, University Paris Diderot, Paris, France
| | - Frank Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Simon Duchesne
- CERVO Research Center, Quebec Mental Health Institute, Québec, Canada
- Radiology Department, Université Laval, Québec, Canada
| | - Marco Düring
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Richard Frayne
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
- Seaman Family MR Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric Jouvent
- Department of Neurology, Lariboisière Hospital, University Paris Diderot, Paris, France
| | - Bradley J. MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Ontario, Canada
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hieab Adams
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Walter H. Backes
- Department of Radiology & Nuclear Medicine, School for Mental Health & Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lucia Ballerini
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sandra E. Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore
| | - Rod Corriveau
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Stroke Service and Memory Disorders Unit, Massachusetts General Hospital, Boston, MA, USA
| | - M. Edip Gurol
- J. Philip Kistler Stroke Research Center, Stroke Service and Memory Disorders Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Ingrisch
- Department of Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Dominic Job
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Bonnie Y.K. Lam
- Therese Pei Fong Chow Research Centre for Prevention of Dementia, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Lenore J. Launer
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Linn
- Institute of Neuroradiology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Cheryl R. McCreary
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Vincent C.T. Mok
- Therese Pei Fong Chow Research Centre for Prevention of Dementia, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Leonardo Pantoni
- Luigi Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - G. Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Joel Ramirez
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Yael D. Reijmer
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jose Rafael Romero
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Natalia S. Rost
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
| | - Christopher J.M. Scott
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Mukul Sharma
- Population Health Research Institute, Hamilton, Ontario, Canada
- Department of Medicine (Neurology) McMaster University, Hamilton, Ontario, Canada
| | - Steven Sourbron
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Rebecca M.E. Steketee
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Richard H. Swartz
- Department of Medicine (Neurology), University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Robert van Oostenbrugge
- Department of Neurology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Matthias van Osch
- C.J. Gorter Center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Stroke Service and Memory Disorders Unit, Massachusetts General Hospital, Boston, MA, USA
| | - David Werring
- University College London Queen Square institute of Neurology, London, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
The association between frailty and MRI features of cerebral small vessel disease. Sci Rep 2019; 9:11343. [PMID: 31383903 PMCID: PMC6683288 DOI: 10.1038/s41598-019-47731-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Frailty is a common syndrome in older individuals that is associated with poor cognitive outcome. The underlying brain correlates of frailty are unclear. The aim of this study was to investigate the association between frailty and MRI features of cerebral small vessel disease in a group of non-demented older individuals. We included 170 participants who were classified as frail (n = 30), pre-frail (n = 85) or non-frail (n = 55). The association of frailty and white matter hyperintensity volume and shape features, lacunar infarcts and cerebral perfusion was investigated by regression analyses adjusted for age and sex. Frail and pre-frail participants were older, more often female and showed higher white matter hyperintensity volume (0.69 [95%-CI 0.08 to 1.31], p = 0.03 respectively 0.43 [95%-CI: 0.04 to 0.82], p = 0.03) compared to non-frail participants. Frail participants showed a non-significant trend, and pre-frail participants showed a more complex shape of white matter hyperintensities (concavity index: 0.04 [95%-CI: 0.03 to 0.08], p = 0.03; fractal dimensions: 0.07 [95%-CI: 0.00 to 0.15], p = 0.05) compared to non-frail participants. No between group differences were found in gray matter perfusion or in the presence of lacunar infarcts. In conclusion, increased white matter hyperintensity volume and a more complex white matter hyperintensity shape may be structural brain correlates of the frailty phenotype.
Collapse
|