1
|
Liu RH, Xiao XY, Yao L, Jia YY, Guo J, Wang XC, Kong Y, Kong QX. Eukaryotic translation initiation factor EIF4G1 p.Ser637Cys mutation in a family with Parkinson's disease with antecedent essential tremor. Exp Ther Med 2024; 27:206. [PMID: 38590578 PMCID: PMC11000071 DOI: 10.3892/etm.2024.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 04/10/2024] Open
Abstract
Essential tremor (ET) and Parkinson's disease (PD) are common chronic movement disorders that can cause a substantial degree of disability. However, the etiology underlying these two conditions remains poorly understood. In the present study, Whole-exome sequencing of peripheral blood samples from the proband and Sanger sequencing of the other 18 family members, and pedigree analysis of four generations of 29 individuals with both ET and PD in a nonconsanguineous Chinese family were performed. Specifically, family members who had available medical information, including historical documentation and physical examination records, were included. A novel c.1909A>T (p.Ser637Cys) missense mutation was identified in the eukaryotic translation initiation factor 4γ1 (EIF4G1) gene as the candidate likely responsible for both conditions. In total, 9 family members exhibited tremor of the bilateral upper limbs and/or head starting from ages of ≥40 years, 3 of whom began showing evidence of PD in their 70s. Eukaryotic initiation factor 4 (eIF4)G1, a component of the translation initiation complex eIF4F, serves as a scaffold protein that interacts with many initiation factors and then binds to the 40S ribosomal subunit. The EIF4G1 (p.Ser637Cys) might inhibit the recruitment of the mRNA to the ribosome. In conclusion, the results from the present study suggested that EIF4G1 may be responsible for the hereditary PD with 'antecedent ET' reported in the family assessed.
Collapse
Affiliation(s)
- Rui-Han Liu
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250399, P.R. China
| | - Xiang-Yu Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lei Yao
- Clinical Medical College, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yuan-Yuan Jia
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Jia Guo
- Clinical Medical College, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Xing-Chen Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yu Kong
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
2
|
Ikeda A, Imai Y, Hattori N. Neurodegeneration-associated mitochondrial proteins, CHCHD2 and CHCHD10–what distinguishes the two? Front Cell Dev Biol 2022; 10:996061. [PMID: 36158221 PMCID: PMC9500460 DOI: 10.3389/fcell.2022.996061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and Coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) are mitochondrial proteins that are thought to be genes which duplicated during evolution and are the causative genes for Parkinson’s disease and amyotrophic lateral sclerosis/frontotemporal lobe dementia, respectively. CHCHD2 forms a heterodimer with CHCHD10 and a homodimer with itself, both of which work together within the mitochondria. Various pathogenic and disease-risk variants have been identified; however, how these mutations cause neurodegeneration in specific diseases remains a mystery. This review focuses on important new findings published since 2019 and discusses avenues to solve this mystery.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Yuzuru Imai, ; Nobutaka Hattori,
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
- *Correspondence: Yuzuru Imai, ; Nobutaka Hattori,
| |
Collapse
|
3
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
4
|
Cornelissen T, Spinazzi M, Martin S, Imberechts D, Vangheluwe P, Bird M, De Strooper B, Vandenberghe W. CHCHD2 harboring Parkinson's disease-linked T61I mutation precipitates inside mitochondria and induces precipitation of wild-type CHCHD2. Hum Mol Genet 2021; 29:1096-1106. [PMID: 32068847 DOI: 10.1093/hmg/ddaa028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
The T61I mutation in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), a protein residing in the mitochondrial intermembrane space (IMS), causes an autosomal dominant form of Parkinson's disease (PD), but the underlying pathogenic mechanisms are not well understood. Here, we compared the subcellular localization and solubility of wild-type (WT) and T61I mutant CHCHD2 in human cells. We found that mitochondrial targeting of both WT and T61I CHCHD2 depended on the four cysteine residues in the C-terminal coiled-coil-helix-coiled-coil-helix (CHCH) domain but not on the N-terminal predicted mitochondrial targeting sequence. The T61I mutation did not interfere with mitochondrial targeting of the mutant protein but induced its precipitation in the IMS. Moreover, T61I CHCHD2 induced increased mitochondrial production of reactive oxygen species and apoptosis, which was prevented by treatment with anti-oxidants. Retention of T61I CHCHD2 in the cytosol through mutation of the cysteine residues in the CHCH domain prevented its precipitation as well as its apoptosis-inducing effect. Importantly, T61I CHCHD2 potently impaired the solubility of WT CHCHD2. In conclusion, our data show that the T61I mutation renders mutant CHCHD2 insoluble inside mitochondria, suggesting loss of function of the mutant protein. In addition, T61I CHCHD2 exerts a dominant-negative effect on the solubility of WT CHCHD2, explaining the dominant inheritance of this form of PD.
Collapse
Affiliation(s)
- Tom Cornelissen
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Marco Spinazzi
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Department of Neurology, Neuromuscular Referral Center, University Hospital of Angers, 49933 Angers, France
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Dorien Imberechts
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Matthew Bird
- Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Wim Vandenberghe
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Li B, Zhao G, Zhou Q, Xie Y, Wang Z, Fang Z, Lu B, Qin L, Zhao Y, Zhang R, Jiang L, Pan H, He Y, Wang X, Luo T, Zhang Y, Wang Y, Chen Q, Liu Z, Guo J, Tang B, Li J. Gene4PD: A Comprehensive Genetic Database of Parkinson's Disease. Front Neurosci 2021; 15:679568. [PMID: 33981200 PMCID: PMC8107430 DOI: 10.3389/fnins.2021.679568] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder with a strong genetic component. A growing number of variants and genes have been reported to be associated with PD; however, there is no database that integrate different type of genetic data, and support analyzing of PD-associated genes (PAGs). By systematic review and curation of multiple lines of public studies, we integrate multiple layers of genetic data (rare variants and copy-number variants identified from patients with PD, associated variants identified from genome-wide association studies, differentially expressed genes, and differential DNA methylation genes) and age at onset in PD. We integrated five layers of genetic data (8302 terms) with different levels of evidences from more than 3,000 studies and prioritized 124 PAGs with strong or suggestive evidences. These PAGs were identified to be significantly interacted with each other and formed an interconnected functional network enriched in several functional pathways involved in PD, suggesting these genes may contribute to the pathogenesis of PD. Furthermore, we identified 10 genes were associated with a juvenile-onset (age ≤ 30 years), 11 genes were associated with an early-onset (age of 30–50 years), whereas another 10 genes were associated with a late-onset (age > 50 years). Notably, the AAOs of patients with loss of function variants in five genes were significantly lower than that of patients with deleterious missense variants, while patients with VPS13C (P = 0.01) was opposite. Finally, we developed an online database named Gene4PD (http://genemed.tech/gene4pd) which integrated published genetic data in PD, the PAGs, and 63 popular genomic data sources, as well as an online pipeline for prioritize risk variants in PD. In conclusion, Gene4PD provides researchers and clinicians comprehensive genetic knowledge and analytic platform for PD, and would also improve the understanding of pathogenesis in PD.
Collapse
Affiliation(s)
- Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Mobile Health Ministry of Education-China Mobile Joint Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yali Xie
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenghuan Fang
- Center for Medical Genetics, Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Bin Lu
- Department of Pathogen Biology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lixia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomeng Wang
- Center for Medical Genetics, Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Tengfei Luo
- Center for Medical Genetics, Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yijing Wang
- Center for Medical Genetics, Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Qian Chen
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Kee TR, Espinoza Gonzalez P, Wehinger JL, Bukhari MZ, Ermekbaeva A, Sista A, Kotsiviras P, Liu T, Kang DE, Woo JAA. Mitochondrial CHCHD2: Disease-Associated Mutations, Physiological Functions, and Current Animal Models. Front Aging Neurosci 2021; 13:660843. [PMID: 33967741 PMCID: PMC8100248 DOI: 10.3389/fnagi.2021.660843] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Rare mutations in the mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are associated with Parkinson's disease (PD) and other Lewy body disorders. CHCHD2 is a bi-organellar mediator of oxidative phosphorylation, playing crucial roles in regulating electron flow in the mitochondrial electron transport chain and acting as a nuclear transcription factor for a cytochrome c oxidase subunit (COX4I2) and itself in response to hypoxic stress. CHCHD2 also regulates cell migration and differentiation, mitochondrial cristae structure, and apoptosis. In this review, we summarize the known disease-associated mutations of CHCHD2 in Asian and Caucasian populations, the physiological functions of CHCHD2, how CHCHD2 mutations contribute to α-synuclein pathology, and current animal models of CHCHD2. Further, we discuss the necessity of continued investigation into the divergent functions of CHCHD2 and CHCHD10 to determine how mutations in these similar mitochondrial proteins contribute to different neurodegenerative diseases.
Collapse
Affiliation(s)
- Teresa R Kee
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| | | | - Jessica L Wehinger
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Mohammed Zaheen Bukhari
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Aizara Ermekbaeva
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Apoorva Sista
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Peter Kotsiviras
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Tian Liu
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - David E Kang
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States.,James A. Haley Veterans Administration Hospital, Tampa, FL, United States
| | - Jung-A A Woo
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
7
|
Li B, Zhao G, Li K, Wang Z, Fang Z, Wang X, Luo T, Zhang Y, Wang Y, Chen Q, Huang Y, Dong L, Guo J, Tang B, Li J. Characterizing the Expression Patterns of Parkinson's Disease Associated Genes. Front Neurosci 2021; 15:629156. [PMID: 33867917 PMCID: PMC8049291 DOI: 10.3389/fnins.2021.629156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Background The expression pattern represents a quantitative phenotype that provides an in-depth view of the molecular mechanism in Parkinson’s disease (PD); however, the expression patterns of PD-associated genes (PAGs) and their relation to age at onset (AAO) remain unclear. Methods The known PD-causing genes and PD-risk genes, which were collected from latest published authoritative meta-analysis, were integrated as PAGs. The expression data from Genotype-Tissue Expression database, Allen Brian Map database, and BrainSpan database, were extracted to characterize the tissue specificity, inhibitory-excitatory neuron expression profile, and spatio-temporal expression pattern of PAGs, respectively. The AAO information of PD-causing gene was download from Gene4PD and MDSgene database. Results We prioritized 107 PAGs and found that the PAGs were more likely to be expressed in brain-related tissues than non-brain tissues and that more PAGs had higher expression levels in excitatory neurons than inhibitory neurons. In addition, we identified two spatio-temporal expression modules of PAGs in human brain: the first module showed a higher expression level in the adult period than in the prenatal period, and the second module showed the opposite features. It showed that more PAGs belong to the first module that the second module. Furthermore, we found that the median AAO of patients with mutations in PD-causing genes of the first module was lower than that of the second module. Conclusion In conclusion, this study provided comprehensive landscape of expression patterns, AAO features and their relationship for the first time, improving the understanding of pathogenesis, and precision medicine in PD.
Collapse
Affiliation(s)
- Bin Li
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Mobile Health Ministry of Education-China Mobile Joint Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Guihu Zhao
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kuokuo Li
- Center for Medical Genetics and Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Zheng Wang
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenghuan Fang
- Center for Medical Genetics and Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Xiaomeng Wang
- Center for Medical Genetics and Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Tengfei Luo
- Center for Medical Genetics and Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Yi Zhang
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yijing Wang
- Center for Medical Genetics and Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Qian Chen
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanfeng Huang
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lijie Dong
- Center for Medical Genetics and Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics and Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Beisha Tang
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics and Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Jinchen Li
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics and Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
8
|
Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol 2021; 11:210002. [PMID: 33715390 PMCID: PMC8061763 DOI: 10.1098/rsob.210002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial intermembrane space (IMS) is the most constricted sub-mitochondrial compartment, housing only about 5% of the mitochondrial proteome, and yet is endowed with the largest variability of protein import mechanisms. In this review, we summarize our current knowledge of the major IMS import pathway based on the oxidative protein folding pathway and discuss the stunning variability of other IMS protein import pathways. As IMS-localized proteins only have to cross the outer mitochondrial membrane, they do not require energy sources like ATP hydrolysis in the mitochondrial matrix or the inner membrane electrochemical potential which are critical for import into the matrix or insertion into the inner membrane. We also explore several atypical IMS import pathways that are still not very well understood and are guided by poorly defined or completely unknown targeting peptides. Importantly, many of the IMS proteins are linked to several human diseases, and it is therefore crucial to understand how they reach their normal site of function in the IMS. In the final part of this review, we discuss current understanding of how such IMS protein underpin a large spectrum of human disorders.
Collapse
Affiliation(s)
- Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Kang EA, Jang J, Choi CH, Kang SB, Bang KB, Kim TO, Seo GS, Cha JM, Chun J, Jung Y, Kim HG, Im JP, Kim S, Ahn KS, Lee CK, Kim HJ, Kim MS, Park DI. Development of a Clinical and Genetic Prediction Model for Early Intestinal Resection in Patients with Crohn's Disease: Results from the IMPACT Study. J Clin Med 2021; 10:jcm10040633. [PMID: 33562363 PMCID: PMC7915022 DOI: 10.3390/jcm10040633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Early intestinal resection in patients with Crohn's disease (CD) is necessary due to a severe and complicating disease course. Herein, we aim to predict which patients with CD need early intestinal resection within 3 years of diagnosis, according to a tree-based machine learning technique. The single-nucleotide polymorphism (SNP) genotype data for 337 CD patients recruited from 15 hospitals were typed using the Korea Biobank Array. For external validation, an additional 126 CD patients were genotyped. The predictive model was trained using the 102 candidate SNPs and seven sets of clinical information (age, sex, cigarette smoking, disease location, disease behavior, upper gastrointestinal involvement, and perianal disease) by employing a tree-based machine learning method (CatBoost). The importance of each feature was measured using the Shapley Additive Explanations (SHAP) model. The final model comprised two clinical parameters (age and disease behavior) and four SNPs (rs28785174, rs60532570, rs13056955, and rs7660164). The combined clinical-genetic model predicted early surgery more accurately than a clinical-only model in both internal (area under the receiver operating characteristic (AUROC), 0.878 vs. 0.782; n = 51; p < 0.001) and external validation (AUROC, 0.836 vs. 0.805; n = 126; p < 0.001). Identification of genetic polymorphisms and clinical features enhanced the prediction of early intestinal resection in patients with CD.
Collapse
Affiliation(s)
- Eun Ae Kang
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Jongha Jang
- Department of Bioinformatics, Soongsil University, Seoul 06978, Korea; (J.J.); (S.K.)
| | - Chang Hwan Choi
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06978, Korea;
| | - Sang Bum Kang
- Department of Internal Medicine, College of Medicine, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Daejeon 34943, Korea;
| | - Ki Bae Bang
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan 31116, Korea;
| | - Tae Oh Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea;
| | - Geom Seog Seo
- Department of Internal Medicine, Digestive Disease Research Institute, Wonkwang University College of Medicine, Iksan 54538, Korea;
| | - Jae Myung Cha
- Department of Internal Medicine, Kyung Hee University Hospital at Gang Dong, Kyung Hee University College of Medicine, Seoul 05278, Korea;
| | - Jaeyoung Chun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Yunho Jung
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Chungnam 31151, Korea;
| | - Hyun Gun Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul 04401, Korea;
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea;
| | - Sangsoo Kim
- Department of Bioinformatics, Soongsil University, Seoul 06978, Korea; (J.J.); (S.K.)
| | - Kwang Sung Ahn
- Functional Genome Institute, PDXen Biosystems Inc., Seoul 34129, Korea;
| | - Chang Kyun Lee
- Department of Internal Medicine, Kyunghee University School of Medicine, Seoul 02454, Korea; (C.K.L.); (H.J.K.)
| | - Hyo Jong Kim
- Department of Internal Medicine, Kyunghee University School of Medicine, Seoul 02454, Korea; (C.K.L.); (H.J.K.)
| | - Min Suk Kim
- Department of Human Intelligence and Robot Engineering, Sangmyung University, Chungcheongnam-do 31066, Korea;
| | - Dong Il Park
- Division of Gastroenterology, Department of Internal Medicine and Gastrointestinal Cancer Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
- Correspondence: ; Tel.: +82-2-2001-2049
| |
Collapse
|
10
|
Pu JL, Gao T, Si XL, Zheng R, Jin CY, Ruan Y, Fang Y, Chen Y, Song Z, Yin XZ, Yan YP, Tian J, Zhang BR. Parkinson's Disease in Teneurin Transmembrane Protein 4 ( TENM4) Mutation Carriers. Front Genet 2021; 11:598064. [PMID: 33414808 PMCID: PMC7783409 DOI: 10.3389/fgene.2020.598064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Mutations in the teneurin transmembrane protein 4 (TENM4) gene, known to be involved in neuropsychiatric disorders, have been identified in three pedigree of essential tremor (ET) from Spain. ET has overlapping clinical manifestations and epidemiological symptoms with Parkinson’s disease (PD), suggesting these two disorders may reflect common genetic risk factors. In this study, we investigated clinical and genetic manifestations in four unrelated pedigrees with both ET and PD in which TENM4 variants were identified. Methods We subsequently explored whether TENM4 variants contributed to the risk of developing PD. The frequency of TENM4 variants was evaluated from four PD pedigrees and other 407 subjects. Results The results revealed 12 different novel heterozygous variants, all at low frequency. A clear general enrichment of TENM4 variants was detected in early onset PD patients (p < 0.001, OR = 5.264, 95% CI = 1.957–14.158). Conclusion The results indicate that rare TENM4 variants may be associated with an increased risk of PD.
Collapse
Affiliation(s)
- Jia-Li Pu
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ting Gao
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiao-Li Si
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ran Zheng
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chong-Yao Jin
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yang Ruan
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yi Fang
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhe Song
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xin-Zhen Yin
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ya-Ping Yan
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jun Tian
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Bao-Rong Zhang
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Saini P, Rudakou U, Yu E, Ruskey JA, Asayesh F, Laurent SB, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Espay AJ, Rouleau GA, Alcalay RN, Fon EA, Postuma RB, Gan-Or Z. Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson's disease. Neurobiol Aging 2020; 100:119.e7-119.e13. [PMID: 33239198 DOI: 10.1016/j.neurobiolaging.2020.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
Rare mutations in genes originally discovered in multigenerational families have been associated with increased risk of Parkinson's disease (PD). The involvement of rare variants in DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 loci has been poorly studied or has produced conflicting results across cohorts. However, they are still being often referred to as "PD genes" and used in different models. To further elucidate the role of these 5 genes in PD, we fully sequenced them using molecular inversion probes in 2408 patients with PD and 3444 controls from 3 different cohorts. A total of 788 rare variants were identified across the 5 genes and 3 cohorts. Burden analyses and optimized sequence Kernel association tests revealed no significant association between any of the genes and PD after correction for multiple comparisons. Our results do not support an association of the 5 tested genes with PD. Combined with previous studies, it is unlikely that any of these genes plays an important role in PD. Their designation as "PARK" genes should be reconsidered.
Collapse
Affiliation(s)
- Prabhjyot Saini
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Uladzislau Rudakou
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Farnaz Asayesh
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Sandra B Laurent
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Oury Monchi
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Yves Dauvilliers
- Department of Neurology, National Reference Center for Narcolepsy, Sleep Unit, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Lior Greenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, The Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Alberto J Espay
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ronald B Postuma
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
12
|
Pan H, Wang Y, Zhao Y, Jiang L, Zeng Q, He Y, Fang Z, Wang Z, Xu Q, Sun Q, Tan J, Yan X, Li J, Tang B, Guo J. No relationship between SRY variants and risk of Parkinson's disease in Chinese population. Neurobiol Aging 2020; 100:119.e3-119.e6. [PMID: 33041088 DOI: 10.1016/j.neurobiolaging.2020.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with inherent sex differences, and sex-determining region Y (SRY) is a gene located in the Y chromosome which encodes a transcription factor involving the regulation of the dopamine system. In this study, we investigated whether SRY variants were associated with PD in Chinese population. A total of 2058 male patients with PD and 1650 male control participants were recruited, and variants in SRY transcript and flanking regions were genotyped by whole-exome sequencing or whole-genome sequencing. Analysis of rare variants by the optimal sequence kernel association test showed no difference in variant burden of coding, 5'-noncoding and 3'-noncoding between the case and control group. In addition, of the 6 common variants identified, none showed a significant effect in altering PD risk in our population using logistic regression. Our results suggested SRY variants were not associated with the risk of PD in Chinese population.
Collapse
Affiliation(s)
- Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenghuan Fang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Zheng R, Jin CY, Chen Y, Ruan Y, Gao T, Lin ZH, Dong JX, Yan YP, Tian J, Pu JL, Zhang BR. Analysis of rare variants of autosomal-dominant genes in a Chinese population with sporadic Parkinson's disease. Mol Genet Genomic Med 2020; 8:e1449. [PMID: 32794657 PMCID: PMC7549569 DOI: 10.1002/mgg3.1449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND To date, several studies have suggested that genes involved in monogenic forms of Parkinson's disease (PD) contribute to unrelated sporadic cases, but there is limited evidence in the Chinese population. METHODS We performed a systematic analysis of 12 autosomal-dominant PD (AD-PD) genes (SNCA, LRRK2, GIGYF2, VPS35, EIF4G1, DNAJC13, CHCHD2, HTRA2, NR4A2, RIC3, TMEM230, and UCHL1) using panel sequencing and database filtration in a case-control study of a cohort of 391 Chinese sporadic PD patients and unrelated controls. We evaluated the association between candidate variants and sporadic PD using gene-based analysis. RESULTS Overall, 18 rare variants were discovered in 18.8% (36/191) of the index patients. In addition to previously reported pathogenic mutations (LRRK2 p.Arg1441His and p.Ala419Val), another four unknown variants were found in LRRK2, which also contribute to PD risk (p = 0.002; odds ratio (OR) = 7.83, 95% confidence intervals (CI) = 1.76-34.93). The cumulative frequency of undetermined rare variants was significantly higher in PD patients (14.1%) than in controls (3.5%) (p = 0.0002; OR=4.54, 95% CI = 1.93-10.69). CONCLUSION Our results confirm the strong impact of LRRK2 on the risk of sporadic PD, and also provide considerable evidence of the existence of additional undetermined rare variants in AD-PD genes that contribute to the genetic etiology of sporadic PD in a Chinese cohort.
Collapse
Affiliation(s)
- Ran Zheng
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong-Yao Jin
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Chen
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Ruan
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ting Gao
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Hao Lin
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-Xian Dong
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya-Ping Yan
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Tian
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-Li Pu
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Chen Y, Gu X, Ou R, Zhang L, Hou Y, Liu K, Cao B, Wei Q, Li C, Song W, Zhao B, Wu Y, Cheng J, Shang H. Evaluating the Role of
SNCA
,
LRRK2
, and
GBA
in Chinese Patients With
Early‐Onset
Parkinson's Disease. Mov Disord 2020; 35:2046-2055. [PMID: 32677286 DOI: 10.1002/mds.28191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Accepted: 06/08/2020] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yongping Chen
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Gu
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wu
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Li N, Wang L, Zhang J, Tan EK, Li J, Peng J, Duan L, Chen C, Zhou D, He L, Peng R. Whole-exome sequencing in early-onset Parkinson's disease among ethnic Chinese. Neurobiol Aging 2020; 90:150.e5-150.e11. [DOI: 10.1016/j.neurobiolaging.2019.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
|
16
|
Zhou W, Ma D, Tan EK. Mitochondrial CHCHD2 and CHCHD10: Roles in Neurological Diseases and Therapeutic Implications. Neuroscientist 2019; 26:170-184. [DOI: 10.1177/1073858419871214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CHCHD2 mutations have been identified in various neurological diseases such as Parkinson’s disease (PD), frontotemporal dementia (FTD), and Alzheimer’s disease (AD). It is also the first mitochondrial gene whose mutations lead to PD. CHCHD10 is a homolog of CHCHD2; similar to CHCHD2, various mutations of CHCHD10 have been identified in a broad spectrum of neurological disorders, including FTD and AD, with a high frequency of CHCHD10 mutations found in motor neuron diseases. Functionally, CHCHD2 and CHCHD10 have been demonstrated to interact with each other in mitochondria. Recent studies link the biological functions of CHCHD2 to the MICOS complex (mitochondrial inner membrane organizing system). Multiple experimental models suggest that CHCHD2 maintains mitochondrial cristae and disease-associated CHCHD2 mutations function in a loss-of-function manner. However, both CHCHD2 and CHCHD10 knockout mouse models appear phenotypically normal, with no obvious mitochondrial defects. Strategies to maintain or enhance mitochondria cristae could provide opportunities to correct the associated cellular defects in disease state and unravel potential novel targets for CHCHD2-linked neurological conditions.
Collapse
Affiliation(s)
- Wei Zhou
- Neuroscience Research laboratory, National Neuroscience Institute, Duke NUS Medical School, Singapore
| | - Dongrui Ma
- Department of Neurology, Singapore General Hospital, Singapore
| | - Eng-King Tan
- Neuroscience Research laboratory, National Neuroscience Institute, Duke NUS Medical School, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
| |
Collapse
|
17
|
Imai Y, Meng H, Shiba-Fukushima K, Hattori N. Twin CHCH Proteins, CHCHD2, and CHCHD10: Key Molecules of Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Int J Mol Sci 2019; 20:ijms20040908. [PMID: 30791515 PMCID: PMC6412816 DOI: 10.3390/ijms20040908] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations of coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) have been found to be linked to Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and/or frontotemporal lobe dementia (FTD). CHCHD2 and CHCHD10 proteins, which are homologous proteins with 54% identity in amino acid sequence, belong to the mitochondrial coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family. A series of studies reveals that these twin proteins form a multimodal complex, producing a variety of pathophysiology by the disease-causing variants of these proteins. In this review, we summarize the present knowledge about the physiological and pathological roles of twin proteins, CHCHD2 and CHCHD10, in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Hongrui Meng
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Kahori Shiba-Fukushima
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|