1
|
Dong Y, Song X, Wang X, Wang S, He Z. The early diagnosis of Alzheimer's disease: Blood-based panel biomarker discovery by proteomics and metabolomics. CNS Neurosci Ther 2024; 30:e70060. [PMID: 39572036 PMCID: PMC11581788 DOI: 10.1111/cns.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 11/25/2024] Open
Abstract
Diagnosis and prediction of Alzheimer's disease (AD) are increasingly pressing in the early stage of the disease because the biomarker-targeted therapies may be most effective. Diagnosis of AD largely depends on the clinical symptoms of AD. Currently, cerebrospinal fluid biomarkers and neuroimaging techniques are considered for clinical detection and diagnosis. However, these clinical diagnosis results could provide indications of the middle and/or late stages of AD rather than the early stage, and another limitation is the complexity attached to limited access, cost, and perceived invasiveness. Therefore, the prediction of AD still poses immense challenges, and the development of novel biomarkers is needed for early diagnosis and urgent intervention before the onset of obvious phenotypes of AD. Blood-based biomarkers may enable earlier diagnose and aid detection and prognosis for AD because various substances in the blood are vulnerable to AD pathophysiology. The application of a systematic biological paradigm based on high-throughput techniques has demonstrated accurate alterations of molecular levels during AD onset processes, such as protein levels and metabolite levels, which may facilitate the identification of AD at an early stage. Notably, proteomics and metabolomics have been used to identify candidate biomarkers in blood for AD diagnosis. This review summarizes data on potential blood-based biomarkers identified by proteomics and metabolomics that are closest to clinical implementation and discusses the current challenges and the future work of blood-based candidates to achieve the aim of early screening for AD. We also provide an overview of early diagnosis, drug target discovery and even promising therapeutic approaches for AD.
Collapse
Affiliation(s)
- Yun Dong
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xun Song
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xiao Wang
- Department of PharmacyShenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology)ShenzhenChina
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Health Science CenterShenzhen UniversityShenzhenChina
| | - Zhendan He
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| |
Collapse
|
2
|
Haller S, Montandon ML, Rodriguez C, Herrmann FR, Giannakopoulos P. Automatic MRI volumetry in asymptomatic cases at risk for normal pressure hydrocephalus. Front Aging Neurosci 2023; 15:1242158. [PMID: 38020768 PMCID: PMC10655029 DOI: 10.3389/fnagi.2023.1242158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The occurrence of significant Alzheimer's disease (AD) pathology was described in approximately 30% of normal pressure hydrocephalus (NPH) cases, leading to the distinction between neurodegenerative and idiopathic forms of this disorder. Whether or not there is a specific MRI signature of NPH remains a matter of debate. The present study focuses on asymptomatic cases at risk for NPH as defined with automatic machine learning tools and combines automatic MRI assessment of cortical and white matter volumetry, risk of AD (AD-RAI), and brain age gap estimation (BrainAge). Our hypothesis was that brain aging and AD process-independent volumetric changes occur in asymptomatic NPH-positive cases. We explored the volumetric changes in normal aging-sensitive (entorhinal cortex and parahippocampal gyrus/PHG) and AD-signature areas (hippocampus), four control cortical areas (frontal, parietal, occipital, and temporal), and cerebral and cerebellar white matter in 30 asymptomatic cases at risk for NPH (NPH probability >30) compared to 30 NPH-negative cases (NPH probability <5) with preserved cognition. In univariate regression models, NPH positivity was associated with decreased volumes in the hippocampus, parahippocampal gyrus (PHG), and entorhinal cortex bilaterally. The strongest negative association was found in the left hippocampus that persisted when adjusting for AD-RAI and Brain Age values. A combined model including the three parameters explained 36.5% of the variance, left hippocampal volumes, and BrainAge values, which remained independent predictors of the NPH status. Bilateral PHG and entorhinal cortex volumes were negatively associated with NPH-positive status in univariate models but this relationship did not persist when adjusting for BrainAge, the latter remaining the only predictor of the NPH status. We also found a negative association between bilateral cerebral and cerebellar white matter volumes and NPH status that persisted after controlling for AD-RAI or Brain Age values, explaining between 50 and 65% of its variance. These observations support the idea that in cases at risk for NPH, as defined by support vector machine assessment of NPH-related MRI markers, brain aging-related and brain aging and AD-independent volumetric changes coexist. The latter concerns volume loss in restricted hippocampal and white matter areas that could be considered as the MRI signature of idiopathic forms of NPH.
Collapse
Affiliation(s)
- Sven Haller
- CIMC - Centre d’Imagerie Médicale de Cornavin, Geneva, Switzerland
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Marie-Louise Montandon
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Cristelle Rodriguez
- Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - François R. Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Panteleimon Giannakopoulos
- Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Geneva, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Boccalini C, Peretti DE, Ribaldi F, Scheffler M, Stampacchia S, Tomczyk S, Rodriguez C, Montandon ML, Haller S, Giannakopoulos P, Frisoni GB, Perani D, Garibotto V. Early-phase 18F-Florbetapir and 18F-Flutemetamol images as proxies of brain metabolism in a memory clinic setting. J Nucl Med 2022; 64:jnumed.122.264256. [PMID: 35863896 PMCID: PMC9902851 DOI: 10.2967/jnumed.122.264256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Alzheimer's disease (AD) neuropathologic changes are β-amyloid (Aβ) deposition, pathologic tau, and neurodegeneration. Dual-phase amyloid-PET might be able to evaluate Aβ deposition and neurodegeneration with a single tracer injection. Early-phase amyloid-PET scans provide a proxy for cerebral perfusion, which has shown good correlations with neural dysfunction measured through metabolic consumption, while the late frames depict amyloid distribution. Our study aims to assess the comparability between early-phase amyloid-PET scans and 18F-fluorodeoxyglucose (18F-FDG)-PET brain topography at the individual level, and their ability to discriminate patients. Methods: 166 subjects evaluated at the Geneva Memory Center, ranging from cognitively unimpaired to Mild Cognitive Impairment (MCI) and dementia, underwent early-phase amyloid-PET - using either 18F-florbetapir (eFBP) (n = 94) or 18F-flutemetamol (eFMM) (n = 72) - and 18F-FDG-PET. Aβ status was assessed. Standardized uptake value ratios (SUVR) were extracted to evaluate the correlation of eFBP/eFMM and their respective 18F-FDG-PET scans. The single-subject procedure was applied to investigate hypometabolism and hypoperfusion maps and their spatial overlap by Dice coefficient. Receiver operating characteristic analyses were performed to compare the discriminative power of eFBP/eFMM, and 18F-FDG-PET SUVR in AD-related metaROI between Aβ-negative healthy controls and cases in the AD continuum. Results: Positive correlations were found between eFBP/eFMM and 18F-FDG-PET SUVR independently of Aβ status and Aβ radiotracer (R>0.72, p<0.001). eFBP/eFMM single-subject analysis revealed clusters of significant hypoperfusion with good correspondence to hypometabolism topographies, independently of the underlying neurodegenerative patterns. Both eFBP/eFMM and 18F-FDG-PET SUVR significantly discriminated AD patients from controls in the AD-related metaROIs (AUCFBP = 0.888; AUCFMM=0.801), with 18F-FDG-PET performing slightly better, however not significantly (all p-value higher than 0.05), than others (AUCFDG=0.915 and 0.832 for subjects evaluated with 18F-FBP and 18F-FMM, respectively). Conclusion: The distribution of perfusion was comparable to that of metabolism at the single-subject level by parametric analysis, particularly in the presence of a high neurodegeneration burden. Our findings indicate that eFBP/eFMM imaging can replace 18F-FDG-PET imaging, as they reveal typical neurodegenerative patterns, or allow to exclude the presence of neurodegeneration. The finding shows cost-saving capacities of amyloid-PET and supports the routine use of the modality for individual classification in clinical practice.
Collapse
Affiliation(s)
- Cecilia Boccalini
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Vita-Salute San Raffaele University, Milan, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Débora Elisa Peretti
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Sara Stampacchia
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Szymon Tomczyk
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Cristelle Rodriguez
- Division of Institutional Measures, Medical Direction, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sven Haller
- CIMC–Centre d’Imagerie Médicale de Cornavin, Geneva, Switzerland
- Faculty of Medicine of University of Geneva, Geneva, Switzerland
- Division of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Panteleimon Giannakopoulos
- Division of Institutional Measures, Medical Direction, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland; and
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| |
Collapse
|
4
|
Alzheimer resemblance atrophy index, BrainAGE, and normal pressure hydrocephalus score in the prediction of subtle cognitive decline: added value compared to existing MR imaging markers. Eur Radiol 2022; 32:7833-7842. [PMID: 35486172 PMCID: PMC9668758 DOI: 10.1007/s00330-022-08798-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 04/01/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Established visual brain MRI markers for dementia include hippocampal atrophy (mesio-temporal atrophy MTA), white matter lesions (Fazekas score), and number of cerebral microbleeds (CMBs). We assessed whether novel quantitative, artificial intelligence (AI)-based volumetric scores provide additional value in predicting subsequent cognitive decline in elderly controls. METHODS A prospective study including 80 individuals (46 females, mean age 73.4 ± 3.5 years). 3T MR imaging was performed at baseline. Extensive neuropsychological assessment was performed at baseline and at 4.5-year follow-up. AI-based volumetric scores were derived from 3DT1: Alzheimer Disease Resemblance Atrophy Index (AD-RAI), Brain Age Gap Estimate (BrainAGE), and normal pressure hydrocephalus (NPH) index. Analyses included regression models between cognitive scores and imaging markers. RESULTS AD-RAI score at baseline was associated with Corsi (visuospatial memory) decline (10.6% of cognitive variability in multiple regression models). After inclusion of MTA, CMB, and Fazekas scores simultaneously, the AD-RAI score remained as the sole valid predictor of the cognitive outcome explaining 16.7% of its variability. Its percentage reached 21.4% when amyloid positivity was considered an additional explanatory factor. BrainAGE score was associated with Trail Making B (executive functions) decrease (8.5% of cognitive variability). Among the conventional MRI markers, only the Fazekas score at baseline was positively related to the cognitive outcome (8.7% of cognitive variability). The addition of the BrainAGE score as an independent variable significantly increased the percentage of cognitive variability explained by the regression model (from 8.7 to 14%). The addition of amyloid positivity led to a further increase in this percentage reaching 21.8%. CONCLUSIONS The AI-based AD-RAI index and BrainAGE scores have limited but significant added value in predicting the subsequent cognitive decline in elderly controls when compared to the established visual MRI markers of brain aging, notably MTA, Fazekas score, and number of CMBs. KEY POINTS • AD-RAI score at baseline was associated with Corsi score (visuospatial memory) decline. • BrainAGE score was associated with Trail Making B (executive functions) decrease. • AD-RAI index and BrainAGE scores have limited but significant added value in predicting the subsequent cognitive decline in elderly controls when compared to the established visual MRI markers of brain aging, notably MTA, Fazekas score, and number of CMBs.
Collapse
|
5
|
Giannakopoulos P, Rodriguez C, Montandon ML, Garibotto V, Haller S, Herrmann FR. Personality Impact on Alzheimer's Disease-Signature and Vascular Imaging Markers: A PET-MRI Study. J Alzheimers Dis 2021; 85:1807-1817. [PMID: 34958019 DOI: 10.3233/jad-215062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Several studies postulated that personality is an independent determinant of cognitive trajectories in old age. OBJECTIVE This study explores the impact of personality on widely used Alzheimer's disease (AD) and vascular imaging markers. METHODS We examined the association between personality and three classical AD imaging markers (centiloid-based-amyloid load, MRI volumetry in hippocampus, and media temporal lobe atrophy), and two vascular MRI parameters (Fazekas score and number of cortical microbleeds) assessed at baseline and upon a 54-month-follow-up. Personality was assessed with the Neuroticism Extraversion Openness Personality Inventory-Revised. Regression models were used to identify predictors of imaging markers including sex, personality factors, presence of APOE ɛ4 allele and cognitive evolution over time. RESULTS Cortical GM volumes were negatively associated with higher levels of Conscientiousness both at baseline and follow-up. In contrast, higher scores of Openness were related to better preservation of left hippocampal volumes in these two time points and negatively associated with medial temporal atrophy at baseline. Amyloid load was not affected by personality factors. Cases with higher Extraversion scores displayed higher numbers of cortical microbleeds at baseline. CONCLUSION Personality impact on brain morphometry is detected only in some among the routinely used imaging markers. The most robust associations concern the positive role of high levels of Conscientiousness and Openness on AD-signature MRI markers. Higher extraversion levels are associated with increased vulnerability to cortical microbleeds pointing to the fact that the socially favorable traits may have a detrimental effect on brain integrity in old age.
Collapse
Affiliation(s)
- Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sven Haller
- CIMC - Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Faculty of Medicine of the University of Geneva, Geneva, Switzerland.,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Herrmann FR, Montandon ML, Garibotto V, Rodriguez C, Haller S, Giannakopoulos P. Determinants of Cognitive Trajectories in Normal Aging: A Longitudinal PET-MRI Study in a Community-based Cohort. Curr Alzheimer Res 2021; 18:482-491. [PMID: 34602046 DOI: 10.2174/1567205018666210930111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The determinants of the progressive decrement of cognition in normal aging are still a matter of debate. Alzheimer disease (AD)-signature markers and vascular lesions, but also psychological variables such as personality factors, are thought to have an impact on the longitudinal trajectories of neuropsychological performances in healthy elderly individuals. OBJECTIVE The current research aimed to identify the main determinants associated with cognitive trajectories in normal aging. METHODS We performed a 4.5-year longitudinal study in 90 older community-dwellers coupling two neuropsychological assessments, medial temporal atrophy (MTA), number of cerebral microbleeds (CMB), and white matter hyperintensities (WMH) at inclusion, visual rating of amyloid and FDG PET at follow-up, and APOE genotyping. Personality factors were assessed at baseline using the NEO-PIR. Univariate and backward stepwise regression models were built to explore the association between the continuous cognitive score (CCS) and both imaging and personality variables. RESULTS The number of strictly lobar CMB at baseline (4 or more) was related to a significant increase in the risk of cognitive decrement. In multivariable models, amyloid positivity was associated with a 1.73 unit decrease of the CCS at follow-up. MTA, WMH and abnormal FDG PET were not related to the cognitive outcome. Among personality factors, only higher agreeableness was related to better preservation of neuropsychological performances. CONCLUSION CMB and amyloid positivity are the only imaging determinants of cognitive trajectories in this highly selected series of healthy controls. Among personality factors, higher agreeableness confers a modest but significant protection against the decline of cognitive performances.
Collapse
Affiliation(s)
- François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Sven Haller
- CIMC - Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland
| | | |
Collapse
|
7
|
Autobiographical Memory Fluency Reductions in Cognitively Unimpaired Middle-Aged and Older Adults at Increased Risk for Alzheimer's Disease Dementia. J Int Neuropsychol Soc 2021; 27:905-915. [PMID: 33509324 PMCID: PMC8319219 DOI: 10.1017/s1355617720001319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Recent research has revealed that cognitively unimpaired older adults who are at higher risk for developing Alzheimer's disease (AD) dementia often exhibit subtle cognitive alterations in their neuropsychological profiles. Emerging evidence suggests that autobiographical memory, which is memory for personal events and knowledge, may be sensitive to early AD-related cognitive alterations. In the present study, we investigated whether the rapid generation of autobiographical memory category exemplars, a retrieval process that taxes the neural network that is vulnerable to early AD, is compromised in cognitively unimpaired middle-aged and older carriers of the e4 allele of the apolipoprotein E gene (APOE4), which increases risk for AD dementia. METHODS In addition to standard neuropsychological tests, we administered a fluency task that requires generating exemplars for two types of autobiographical memory, namely episodic memories and personal semantics, to a group of cognitively unimpaired middle-aged and older adults (n = 45) enriched with APOE4 carriers (n = 20). RESULTS While no APOE4 deficits were found on standard neuropsychological tests, episodic and personal semantic exemplar generation was reduced in the APOE4 group. DISCUSSION Autobiographical memory aberrations associated with a higher risk for AD are evident in fluency and affect both episodic memory and personal semantics.
Collapse
|
8
|
Montandon ML, Herrmann FR, Garibotto V, Rodriguez C, Haller S, Giannakopoulos P. Microbleeds and Medial Temporal Atrophy Determine Cognitive Trajectories in Normal Aging: A Longitudinal PET-MRI Study. J Alzheimers Dis 2021; 77:1431-1442. [PMID: 32925053 DOI: 10.3233/jad-200559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The cognitive trajectories in normal aging may be affected by medial temporal atrophy (MTA) and amyloid burden, as well as vascular pathologies such as cortical microbleeds (CMB) and white matter hyperintensities (WMH). OBJECTIVE We addressed here the role of imaging markers in their prediction in a real-world situation. METHODS We performed a 4.5-year longitudinal study in 90 older community-dwellers coupling two neuropsychological assessments, MTA estimated with the Schelten's scale, number of CMB, and WMH evaluated with the Fazekas score at inclusion and follow-up, visual rating of amyloid PET and glucose hypometabolism at follow-up, and APOE genotyping. Regression models were built to explore the association between the continuous cognitive score (CCS) and imaging parameters. RESULTS The number of strictly lobar CMB at baseline (4 or more) was related to a 5.5-fold increase of the risk of cognitive decrement. This association persisted in multivariable models explaining 10.6% of the CCS decrease variance. MTA, and Fazekas score at baseline and amyloid positivity or abnormal FDG PET, were not related to the cognitive outcome. The increase of right MTA at follow-up was the only correlate of CCS decrease both in univariate and multivariable models explaining 9.2% of its variance. CONCLUSION The present data show that the accumulation of more than four CMB is associated with significant cognitive decrement over time in highly educated elderly persons. They also reveal that the progressive deterioration of cognitive performance within the age-adjusted norms is also related to the increase of visually assessed MTA.
Collapse
Affiliation(s)
- Marie-Louise Montandon
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Switzerland
| | - François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals and University of Geneva, Switzerland
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Switzerland.,Medical Direction, University of Geneva Hospitals, Geneva, Switzerland
| | - Sven Haller
- CIRD - Centre d'Imagerie Rive Droite in Geneva, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Department of Neuroradiology, Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Switzerland.,Medical Direction, University of Geneva Hospitals, Geneva, Switzerland
| |
Collapse
|
9
|
Giannakopoulos P, Montandon ML, Rodriguez C, Haller S, Garibotto V, Herrmann FR. Prediction of Subtle Cognitive Decline in Normal Aging: Added Value of Quantitative MRI and PET Imaging. Front Aging Neurosci 2021; 13:664224. [PMID: 34322007 PMCID: PMC8313279 DOI: 10.3389/fnagi.2021.664224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022] Open
Abstract
Quantitative imaging processing tools have been proposed to improve clinic-radiological correlations but their added value at the initial stages of cognitive decline is still a matter of debate. We performed a longitudinal study in 90 community-dwelling elders with three neuropsychological assessments during a 4.5 year follow-up period, and visual assessment of medial temporal atrophy (MTA), white matter hyperintensities, cortical microbleeds (CMB) as well as amyloid positivity, and presence of abnormal FDG-PET patterns. Quantitative imaging data concerned ROI analysis of MRI volume, amyloid burden, and FDG-PET metabolism in several AD-signature areas. Multiple regression models, likelihood-ratio tests, and areas under the receiver operating characteristic curve (AUC) were used to compare quantitative imaging markers to visual inspection. The presence of more or equal to four CMB at inclusion and slight atrophy of the right MTL at follow-up were the only parameters to be independently related to the worst cognitive score explaining 6% of its variance. This percentage increased to 24.5% when the ROI-defined volume loss in the posterior cingulate cortex, baseline hippocampus volume, and MTL metabolism were also considered. When binary classification of cognition was made, the area under the ROC curve increased from 0.69 for the qualitative to 0.79 for the mixed imaging model. Our data reveal that the inclusion of quantitative imaging data significantly increases the prediction of cognitive changes in elderly controls compared to the single consideration of visual inspection.
Collapse
Affiliation(s)
- Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Sven Haller
- Department of Neuroradiology, Faculty of Medicine of the University of Geneva, Geneva, Switzerland.,CIRD-Centre d'Imagerie Rive Droite, Geneva, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Valentina Garibotto
- Department of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Haller S, Montandon ML, Lilja J, Rodriguez C, Garibotto V, Herrmann FR, Giannakopoulos P. PET amyloid in normal aging: direct comparison of visual and automatic processing methods. Sci Rep 2020; 10:16665. [PMID: 33028945 PMCID: PMC7542434 DOI: 10.1038/s41598-020-73673-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Assessment of amyloid deposits is a critical step for the identification of Alzheimer disease (AD) signature in asymptomatic elders. Whether the different amyloid processing methods impacts on the quality of clinico-radiological correlations is still unclear. We directly compared in 155 elderly controls with extensive neuropsychological testing at baseline and 4.5 years follow-up three approaches: (i) operator-dependent standard visual reading, (ii) operator-independent automatic SUVR with four different reference regions, and (iii) novel operator and region of reference-independent automatic Aβ-index. The coefficient of variance was used to examine inter-individual variability for each processing method. Using visually-established amyloid positivity as the gold standard, the area under the receiver operating characteristic curve (ROC) was computed. Linear regression models were used to assess the association between changes in continuous cognitive score and amyloid uptake values. In SUVR analyses, the coefficient of variance varied from 1.718 to 1.762 according to the area of reference and was of − 3.045 for the Aβ-index method. Compared to the visual rating, Aβ-index method showed the largest area under the ROC curve [0.9568 (95% CI 0.9252, 0.98833)]. The best cut-off score was of − 0.3359 with sensitivity and specificity values of 0.97 and 0.83, respectively. Only the Aß-index was related to more severe decrement of cognitive performances [regression coefficient: 9.103 (95% CI 1.148, 17.058)]. The Aβ-index is considered as preferred option in asymptomatic elders, since it is operator-independent, avoids the selection of reference area, is closer to established visual scoring and correlates with the evolution of cognitive performances.
Collapse
Affiliation(s)
- Sven Haller
- CIRD Centre d'imagerie Rive Droite, Geneva, Switzerland. .,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden. .,Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Marie-Louise Montandon
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Johan Lilja
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Hermes Medical Solutions, Stockholm, Sweden
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Division of Institutional Measures, Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|