1
|
Kancheva AK, Lyall DM, Millard L, Wardlaw JM, Quinn TJ. Clinical Phenotypes Associated With Cerebral Small Vessel Disease: A Study of 45,013 UK Biobank Participants. Neurology 2024; 103:e209919. [PMID: 39321409 DOI: 10.1212/wnl.0000000000209919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cerebral small vessel disease (cSVD) is the most common pathology underlying vascular cognitive impairment. Although other clinical features of cSVD are increasingly recognized, it is likely that certain symptoms are being overlooked. A comprehensive description of cSVD associations with clinical phenotypes at scale is lacking. The objective of this study was to conduct a large-scale, hypothesis-free study of associations between cSVD and clinical phenotypes in UK Biobank (UKB). METHODS We included participants from the UKB imaging study who had available information on total volume of white matter hyperintensities (WMHs), the most common cSVD neuroimaging feature. We included various UKB variables describing clinical phenotypes, defined as observable signs and symptoms of individuals with concurrent neuroimaging evidence of cSVD. We conducted a phenome scan using the open-source PHESANT software package. Total volume of WMHs was introduced as the independent variable and clinical phenotypes as the dependent variables in the regression model. The association of each phenotype with total volume of WMHs was tested using one of several regression analyses (all age at recruitment and sex-adjusted). All associations were corrected for multiple comparisons using the false discovery rate (FDR) correction method. RESULTS We included 45,013 participants in the analysis (mean age = 54.97 years, SD = 7.55). We confirm previously reported associations with depression (odds ratio [OR] = 1.07 [95% CI 1.05-1.10]), apathy (OR = 1.11 [95% CI 1.08-1.14]), falls (OR = 1.11 [95% CI 1.09-1.13]), respiratory problems (OR = 1.14 [95% CI 1.04-1.25]), and sleep disturbance (OR = 1.07 [95% CI 1.04-1.09], all FDR-adjusted p < 0.001). We further identified associations with all-cause dental issues (OR = 0.94 [95% CI 0.96-0.92]), hearing problems (OR = 1.06 [95% CI 1.03-1.08]), and eye problems (OR = 0.93 [95% CI 0.91-0.95], all FDR-adjusted p < 0.001). DISCUSSION Our findings suggest that presence of cSVD associates with concurrent clinical phenotypes across several body systems. We have corroborated established associations of cSVD and present novel ones. While our results do not provide causality or direction of association because of the cross-sectional nature of our study, they support the need for a more holistic view of cSVD in research, practice, and policy.
Collapse
Affiliation(s)
- Angelina K Kancheva
- From the School of Cardiovascular and Metabolic Health (A.K.K., T.J.Q.) School of Health and Wellbeing (D.M.L.), University of Glasgow; MRC Integrative Epidemiology Unit (L.M.), University of Bristol; and Centre for Clinical Brain Sciences (J.M.W.), University of Edinburgh, United Kingdom
| | - Donald M Lyall
- From the School of Cardiovascular and Metabolic Health (A.K.K., T.J.Q.) School of Health and Wellbeing (D.M.L.), University of Glasgow; MRC Integrative Epidemiology Unit (L.M.), University of Bristol; and Centre for Clinical Brain Sciences (J.M.W.), University of Edinburgh, United Kingdom
| | - Louise Millard
- From the School of Cardiovascular and Metabolic Health (A.K.K., T.J.Q.) School of Health and Wellbeing (D.M.L.), University of Glasgow; MRC Integrative Epidemiology Unit (L.M.), University of Bristol; and Centre for Clinical Brain Sciences (J.M.W.), University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- From the School of Cardiovascular and Metabolic Health (A.K.K., T.J.Q.) School of Health and Wellbeing (D.M.L.), University of Glasgow; MRC Integrative Epidemiology Unit (L.M.), University of Bristol; and Centre for Clinical Brain Sciences (J.M.W.), University of Edinburgh, United Kingdom
| | - Terence J Quinn
- From the School of Cardiovascular and Metabolic Health (A.K.K., T.J.Q.) School of Health and Wellbeing (D.M.L.), University of Glasgow; MRC Integrative Epidemiology Unit (L.M.), University of Bristol; and Centre for Clinical Brain Sciences (J.M.W.), University of Edinburgh, United Kingdom
| |
Collapse
|
2
|
Waymont JMJ, Valdés Hernández MDC, Bernal J, Duarte Coello R, Brown R, Chappell FM, Ballerini L, Wardlaw JM. Systematic review and meta-analysis of automated methods for quantifying enlarged perivascular spaces in the brain. Neuroimage 2024; 297:120685. [PMID: 38914212 DOI: 10.1016/j.neuroimage.2024.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Research into magnetic resonance imaging (MRI)-visible perivascular spaces (PVS) has recently increased, as results from studies in different diseases and populations are cementing their association with sleep, disease phenotypes, and overall health indicators. With the establishment of worldwide consortia and the availability of large databases, computational methods that allow to automatically process all this wealth of information are becoming increasingly relevant. Several computational approaches have been proposed to assess PVS from MRI, and efforts have been made to summarise and appraise the most widely applied ones. We systematically reviewed and meta-analysed all publications available up to September 2023 describing the development, improvement, or application of computational PVS quantification methods from MRI. We analysed 67 approaches and 60 applications of their implementation, from 112 publications. The two most widely applied were the use of a morphological filter to enhance PVS-like structures, with Frangi being the choice preferred by most, and the use of a U-Net configuration with or without residual connections. Older adults or population studies comprising adults from 18 years old onwards were, overall, more frequent than studies using clinical samples. PVS were mainly assessed from T2-weighted MRI acquired in 1.5T and/or 3T scanners, although combinations using it with T1-weighted and FLAIR images were also abundant. Common associations researched included age, sex, hypertension, diabetes, white matter hyperintensities, sleep and cognition, with occupation-related, ethnicity, and genetic/hereditable traits being also explored. Despite promising improvements to overcome barriers such as noise and differentiation from other confounds, a need for joined efforts for a wider testing and increasing availability of the most promising methods is now paramount.
Collapse
Affiliation(s)
- Jennifer M J Waymont
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK.
| | - José Bernal
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK; German Centre for Neurodegenerative Diseases (DZNE), Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - Francesca M Chappell
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | | | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, the University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| |
Collapse
|
3
|
Li Y, Kalpouzos G, Bäckman L, Qiu C, Laukka EJ. Association of white matter hyperintensity accumulation with domain-specific cognitive decline: a population-based cohort study. Neurobiol Aging 2023; 132:100-108. [PMID: 37776581 DOI: 10.1016/j.neurobiolaging.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
We investigated the association of load and accumulation of white matter hyperintensities (WMHs) with rate of cognitive decline. This population-based study included 510 dementia-free people (age ≥60 years) who had repeated measures of global and regional (lobar, deep, periventricular) WMHs up to 6 years (from 2001-2003 to 2007-2010) and repeated measures of cognitive function (episodic memory, semantic memory, category fluency, letter fluency, executive function, perceptual speed) up to 15 years (from 2001-2004 to 2016-2019). We found that greater baseline loads of global and regional WMHs were associated with faster decline in letter fluency, perceptual speed, and global cognition. Furthermore, faster accumulation of global, deep, and periventricular WMHs was related to accelerated cognitive decline, primarily in perceptual speed. These data show that WMHs are associated with decline in perceptual speed rather than episodic or semantic memory and that cognitive change is more vulnerable to WMH accumulations in deep and periventricular regions.
Collapse
Affiliation(s)
- Yuanjing Li
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Bäckman
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Chengxuan Qiu
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
| | - Erika J Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden.
| |
Collapse
|
4
|
You Y, He M. Simvastatin Alleviates Vascular Cognitive Impairment Caused by Lacunar Cerebral Infarction Through Protein Kinase B/Nuclear Factor Erythroid 2–Related Factor 2 (AKT/Nrf2) Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lacunar cerebral infarction (LACI) is one of the main causes of vascular cognitive impairment (VCI). Herein, this study explored the potential effect of Simvastatin (Sim) on VCI secondary to LACI and Akt/Nrf2 signaling transduction and apoptosis. We established a rat model of VCI and
the animals were administered with Sim (40 mg/kg and 80 mg/kg) every day for 28 days. After that, the cognition and memory abilities of rats were assessed together with analysis of morphological changes of hippocampal neurons by immunohistochemistry staining and level of anti-apoptotic related
proteins and Akt and Nrf2 signaling proteins by western blot. Compared with normal saline (control group), Sim administration significantly improved the capacity spatial learning and relieved the memory impairment with an improvement in morphological defects. Importantly, Sim treatment restored
the p-Akt, t-Nrf2, n-Nrf2 and HO-1 expression along with up-regulation of Bcl-2 and down-regulation of Bax. In conclusion, Sim improves cognitive and morphological disorders induced by LACI possibly through regulating Akt/Nrf2 signaling pathway. These evidence might promote the development
of Sim-based treatment for VCI and LACI.
Collapse
Affiliation(s)
- Yiping You
- Department of Neurology, People’s Hospital, Wuxi 214000, Jiangsu, China
| | - Min He
- Department of Nail Breast, The Second People’s Hospital, Wuxi 214000, Jiangsu, China
| |
Collapse
|
5
|
Thomas A, Crivello F, Mazoyer B, Debette S, Tzourio C, Samieri C. Fish Intake and MRI Burden of Cerebrovascular Disease in Older Adults. Neurology 2021; 97:e2213-e2222. [PMID: 34732545 DOI: 10.1212/wnl.0000000000012916] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/15/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Fish intake may prevent cerebrovascular disease (CVD), yet the mechanisms are unclear, especially regarding its impact on subclinical damage. Assuming that fish may have pleiotropic effect on cerebrovascular health, we investigated the association of fish intake with global CVD burden based on brain MRI markers. METHODS This cross-sectional analysis included participants from the Three-City Dijon population-based cohort (age ≥65 years) without dementia, stroke, or history of hospitalized cardiovascular disease who underwent brain MRI with automated assessment of white matter hyperintensities, visual detection of covert infarcts, and grading of dilated perivascular spaces. Fish intake was assessed through a frequency questionnaire, and the primary outcome measure was defined as the first component of a factor analysis of mixed data applied to MRI markers. The association of fish intake with the CVD burden indicator was studied with linear regressions. RESULTS In total, 1,623 participants (mean age 72.3 years, 63% women) were included. The first component of factor analysis (32.4% of explained variance) was associated with higher levels of all 3 MRI markers. Higher fish intake was associated with lower CVD burden. In a model adjusted for total intracranial volume, compared to participants consuming fish <1 time per week, those consuming fish 2 to 3 and ≥4 times per week had a β = -0.19 (95% confidence interval -0.37 to -0.01) and β = -0.30 (-0.57 to -0.03) lower indicator of CVD burden, respectively (p trend < 0.001). We found evidence of effect modification by age such that the association of fish to CVD was stronger in younger participants (65-69 years) and not significant in participants ≥75 years of age. For comparison, in the younger age group, consuming fish 2 to 3 times a week was roughly equivalent (in the opposite direction) to the effect of hypertension. DISCUSSION In this large population-based study, higher frequency of fish intake was associated with lower CVD burden, especially among participants <75 years of age, suggesting a beneficial effect on brain vascular health before manifestation of overt brain disease. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in individuals without stroke or dementia, higher fish intake is associated with lower subclinical CVD on MRI.
Collapse
Affiliation(s)
- Aline Thomas
- From the University of Bordeaux (A.T., S.D., C.T., C.S.), INSERM, BPH, U1219; and University of Bordeaux (F.C., B.M.), CNRS, CEA, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, France.
| | - Fabrice Crivello
- From the University of Bordeaux (A.T., S.D., C.T., C.S.), INSERM, BPH, U1219; and University of Bordeaux (F.C., B.M.), CNRS, CEA, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, France
| | - Bernard Mazoyer
- From the University of Bordeaux (A.T., S.D., C.T., C.S.), INSERM, BPH, U1219; and University of Bordeaux (F.C., B.M.), CNRS, CEA, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, France
| | - Stephanie Debette
- From the University of Bordeaux (A.T., S.D., C.T., C.S.), INSERM, BPH, U1219; and University of Bordeaux (F.C., B.M.), CNRS, CEA, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, France
| | - Christophe Tzourio
- From the University of Bordeaux (A.T., S.D., C.T., C.S.), INSERM, BPH, U1219; and University of Bordeaux (F.C., B.M.), CNRS, CEA, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, France
| | - Cecilia Samieri
- From the University of Bordeaux (A.T., S.D., C.T., C.S.), INSERM, BPH, U1219; and University of Bordeaux (F.C., B.M.), CNRS, CEA, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, France
| |
Collapse
|
6
|
Cerebral small vessel disease burden and longitudinal cognitive decline from age 73 to 82: the Lothian Birth Cohort 1936. Transl Psychiatry 2021; 11:376. [PMID: 34226517 PMCID: PMC8257729 DOI: 10.1038/s41398-021-01495-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Slowed processing speed is considered a hallmark feature of cognitive decline in cerebral small vessel disease (SVD); however, it is unclear whether SVD's association with slowed processing might be due to its association with overall declining general cognitive ability. We quantified the total MRI-visible SVD burden of 540 members of the Lothian Birth Cohort 1936 (age: 72.6 ± 0.7 years; 47% female). Using latent growth curve modelling, we tested associations between total SVD burden at mean age 73 and changes in general cognitive ability, processing speed, verbal memory and visuospatial ability, measured at age 73, 76, 79 and 82. Covariates included age, sex, vascular risk and childhood cognitive ability. In the fully adjusted models, greater SVD burden was associated with greater declines in general cognitive ability (standardised β: -0.201; 95% CI: [-0.36, -0.04]; pFDR = 0.022) and processing speed (-0.222; [-0.40, -0.04]; pFDR = 0.022). SVD burden accounted for between 4 and 5% of variance in declines of general cognitive ability and processing speed. After accounting for the covariance between tests of processing speed and general cognitive ability, only SVD's association with greater decline in general cognitive ability remained significant, prior to FDR correction (-0.222; [-0.39, -0.06]; p = 0.008; pFDR = 0.085). Our findings do not support the notion that SVD has a specific association with declining processing speed, independent of decline in general cognitive ability (which captures the variance shared across domains of cognitive ability). The association between SVD burden and declining general cognitive ability supports the notion of SVD as a diffuse, whole-brain disease and suggests that trials monitoring SVD-related cognitive changes should consider domain-specific changes in the context of overall, general cognitive decline.
Collapse
|